Search Results

Now showing 1 - 2 of 2
  • Item
    Thermomechanical characterization and modeling of cold-drawing of poly(ethylene Terephthalate)
    (Basel : MDPI, 2019) Oberer, Jürgen; Schneider, Konrad; Majschak, Jens-Peter
    The tensile testing of amorphous polyethylene terephthalate is observed until failure by IR thermography and optical strain measurement. The deformation can be subdivided in six deformation phases: elastic deformation, neck formation with a localized sharp temperature rise, neck propagation, which is also known as cold-drawing, with heat generation in a transition zone, crack initialization with local heating, crack growth, and rupture. These deformation phases are showing different mechanical and thermal reactions to the deformation. The initial and drawn samples are studied with differential scanning calorimetry. Alongside heating due to the dissipation of mechanical energy, latent heat due to strain-induced crystallization was detected. While the material is cold-drawn, a high dependence on the crosshead speed is found for the heat generation as well as the draw ratio, mechanical response, and morphological changes due to orientation and crystallization. For cold-drawing, a thermomechanical model is introduced, which is based on the first law of thermodynamics and reproduces the temperature distribution along the sample.
  • Item
    Glassy dynamics of poly(2-vinyl-pyridine) brushes with varying grafting density
    (London : Royal Soc. of Chemistry, 2015) Neubauer, Nils; Winkler, René; Tress, Martin; Uhlmann, Petra; Reiche, Martin; Kipnusu, Wycliffe Kiprop; Kremer, Friedrich
    The molecular dynamics of poly(2-vinyl-pyridine) (P2VP) brushes is measured by Broadband Dielectric Spectroscopy (BDS) in a wide temperature (250 K to 440 K) and broad spectral (0.1 Hz to 1 MHz) range. This is realized using nanostructured, highly conductive silicon electrodes being separated by silica spacers as small as 35 nm. A “grafting-to”-method is applied to prepare the P2VP-brushes with five different grafting densities (0.030 nm−2 to 0.117 nm−2), covering the “true-brush” regime with highly stretched coils and the “mushroom-to-brush” transition regime. The film thickness ranges between 1.8 to 7.1 (±0.2) nm. Two relaxations are observed, an Arrhenius-like process being attributed to fluctuations in the poly(glycidyl-methacrylate) (PGMA) linker used for the grafting reaction and the segmental dynamics (dynamic glass transition) of the P2VP brushes. The latter is characterized by a Vogel–Fulcher–Tammann dependence similar to bulk P2VP. The results can be comprehended considering the length scale on which the dynamic glass transition (≤1 nm) takes place.