Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Self-organized formation of unidirectional and quasi-one-dimensional metallic Tb silicide nanowires on Si(110)

2022, Appelfeller, Stephan, Franz, Martin, Karadag, Murat, Kubicki, Milan, Zielinski, Robert, Krivenkov, Maxim, Varykhalov, Andrei, Preobrajenski, Alexei, Dähne, Mario

Terbium induced nanostructures on Si(110) and their growth are thoroughly characterized by low energy electron diffraction, scanning tunneling microscopy and spectroscopy, core-level and valence band photoelectron spectroscopy, and angle-resolved photoelectron spectroscopy. For low Tb coverage, a wetting layer forms with its surface fraction continuously decreasing with increasing Tb coverage in favor of the formation of unidirectional Tb silicide nanowires. These nanowires show high aspect ratios for high annealing temperatures or on substrates already containing Tb in the bulk. Both wetting layer and nanowires are stable for temperatures up to 750°C. In contrast to the nanowires, the wetting layer is characterized by a band gap. Thus, the metallic nanowires, which show a quasi-one-dimensional electronic band structure, are embedded in a semiconducting surrounding of wetting layer and substrate, insulating the nanowires from each other.

Loading...
Thumbnail Image
Item

Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approaches

2010, Chèze, Caroline

This work focuses on the nucleation and growth mechanisms of GaN nanowires (NWs) by molecular beam epitaxy (MBE). The main novelties of this study are the intensive employment of in-situ techniques and the direct comparison of self-induced and catalyst-induced NWs. On silicon substrates, GaN NWs form in MBE without the use of any external catalyst seed. On sapphire, in contrast, NWs grow under identical conditions only in the presence of Ni seeds. The processes leading to NW nucleation are fundamentally different for both approaches. In the catalyst-assisted approach, Ga strongly reacts with the catalyst Ni particles whose crystal structure and phases are decisive for the NW growth, while in the catalyst-free approach, N forms an interfacial layer with Si before the intense nucleation of GaN starts. Both approaches yield monocrystalline wurtzite GaN NWs, which grow in the Ga-polar direction. However, the catalyst-assisted NWs are longer than the catalyst-free ones after growth under identical conditions, and they contain many stacking faults. By comparison the catalyst-free NWs are largely free of defects and their photoluminescence is much more intense than the one of the catalyst-assisted NWs. All of these differences can be explained as effects of the catalyst. The seed captures Ga atoms arriving at the NW tip more efficiently than the bare top facet in the catalyst-free approach. In addition, stacking faults could result from both the presence of the additional solid phase constituted by the catalyst-particles and the contamination of the NWs by the catalyst material. Finally, such contamination would generate non-radiative recombination centers. Thus, the use of catalyst seeds may offer an additional way to control the growth of NWs, but both the structural and the optical material quality of catalyst-free NWs are superior.