Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Multiscale thermodynamics of charged mixtures

2021, Vágner, Petr, Pavelka, Michal, Esen, Oğul

A multiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids, electrodynamics, polarization, and magnetization is proposed. The mechanical (reversible) part of the theory is constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian system with a new Poisson bracket, which can be used in principle with any energy functional. The thermodynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential, which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared to recent literature. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Hamiltonian framework for short optical pulses

2014, Amiranashvili, Shalva

Physics of short optical pulses is an important and active research area in nonlinear optics. In what follows we theoretically consider the most extreme representatives of short pulses that contain only several oscillations of electromagnetic field. Description of such pulses is traditionally based on envelope equations and slowly varying envelope approximation, despite the fact that the envelope is not ?slow? and, moreover, there is no clear definition of such a ?fast? envelope. This happens due to another paradoxical feature: the standard (envelope) generalized nonlinear Schrödinger equation yields very good correspondence to numerical solutions of full Maxwell equations even for few-cycle pulses, a thing that should not be. In what follows we address ultrashort optical pulses using Hamiltonian framework for nonlinear waves. As it appears, the standard optical envelope equation is just a reformulation of general Hamiltonian equations. In a sense, no approximations are required, this is why the generalized nonlinear Schrödinger equation is so effective. Moreover, the Hamiltonian framework greatly contributes to our understanding of ?fast? envelope, ultrashort solitons, stability and radiation of optical pulses. Even the inclusion of dissipative terms is possible making the Hamiltonian approach an universal theoretical tool also in extreme nonlinear optics.