Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability

2017, Hempel, Sabrina, König, Marcel, Menz, Christoph, Janke, David, Amon, Barbara, Banhazi, Thomas M., Estellés, Fernando, Amon, Thomas

The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors

Loading...
Thumbnail Image
Item

From Paris to Makkah: heat stress risks for Muslim pilgrims at 1.5 °C and 2 °C

2021-2-9, Saeed, Fahad, Schleussner, Carl-Friedrich, Almazroui, Mansour

The pilgrimages of Muslims to Makkah (Hajj and Umrah) is one of the largest religious gatherings in the world which draws millions of people from around 180 countries each year. Heat stress during summer has led to health impacts including morbidity and mortality in the past, which is likely to worsen due to global warming. Here we investigate the impacts of increasing heat stress during the peak summer months over Makkah at present levels of warming as well as under Paris Agreement's targets of 1.5 °C and 2 °C global mean temperature increase above pre-industrial levels. This is achieved by using multi member ensemble projections from the half a degree additional warming, prognosis and projected impacts project. We find a substantial increase in the exceedance probabilities of dangerous thresholds (wet-bulb temperature >24.6 °C) in 1.5 °C and 2 °C warmer worlds over the summer months. For the 3 hottest months, August, September and October, even thresholds of extremely dangerous (wet-bulb temperature >29.1 °C) health risks may be surpassed. An increase in exceedance probability of dangerous threshold is projected by two and three times in 1.5 °C and 2 °C warmer worlds respectively for May as compared to the reference climate. September shows the highest increase in the exceedance probability of extremely dangerous threshold which is increased to 4 and 13 times in 1.5 °C and 2 °C warmer worlds respectively. Based on the indicators of hazard, exposure and vulnerability, we carried out probabilistic risk analysis of life-threatening heat stroke over Makkah. A ten time increase in the heat stroke risk at higher wet-bulb temperatures for each month is projected in 2 °C warmer world. If warming was limited to 1.5 °C world, the risk would only increase by about five times, or half the risk of 2 °C. Our results indicate that substantial heat related risks during Hajj and Umrah happening over peak summer months, as it is the case for Hajj during this decade, will require substantial adaptation measures and would negatively affect the performance of the rite. Stringent mitigation actions to keep the global temperature to 1.5 °C can reduce the risks of heat related illnesses and thereby reduce the non-economic loss and damage related to one of the central pillars of a world religion.

Loading...
Thumbnail Image
Item

The effects of heat stress on the behaviour of dairy cows – a review

2021-5-8, Herbut, Piotr, Hoffmann, Gundula, Angrecka, Sabina, Godyń, Dorota, Vieira, Frederico Márcio Corrêa, Adamczyk, Krzysztof, Kupczyński, Robert

Heat stress in livestock is a function of macro- A nd microclimatic factors, their duration and intensity, the environments where they occur and the biological characteristics of the animal. Due to intense metabolic processes, high-producing dairy cows are highly vulnerable to the effects of heat stress. Disturbances in their thermoregulatory capability are reflected by behavioural, physiological and production changes. Expression of thermoregulatory behaviour such as reduction of activity and feed intake, searching for cooler places or disturbances in reproductive behaviours may be very important indicators of animal welfare. Especially maintenance of standing or lying position in dairy cattle may be a valuable marker of the negative environmental impact. Highly mechanized farms with large numbers of animals have the informatic system that can detect alterations automatically, while small family farms cannot afford this type of equipment. Therefore, observing and analysing behavioural changes to achieve a greater understanding of heat stress issue may be a key factor for developing the effective strategies to minimize the effects of heat stress in cattle. The aim of this review is to present the state of knowledge, over the last years, regarding behavioural changes in dairy cows (Bos taurus) exposed to heat stress conditions and discuss some herd management strategies providing mitigation of the overheat consequences.

Loading...
Thumbnail Image
Item

Optimization of short-term hot-water treatment of apples for fruit salad production by non-invasive chlorophyll-fluorescence imaging

2020, Herppich, Werner B., Maggioni, Marco, Huyskens-Keil, Susanne, Kabelitz, Tina, Hassenberg, Karin

For fresh ]cut salad production, hot-water treatment (HWT) needs optimization in terms of temperature and duration to guarantee a gentle and non-stressing processing to fully retain product quality besides an effective sanitation. One major initial target of heat treatment is photosynthesis, making it a suitable and sensitive marker for HWT effects. Chlorophyll fluorescence imaging (CFI) is a rapid and non ]invasive tool to evaluate respective plant responses. Following practical applications in fruit salad production, apples of colored and of green ]ripe cultivars ( eBraeburn f, eFuji f, eGreenstar f, eGranny Smith f), obtained from a local fruit salad producer, were hot ]water treated from 44 to 70 °C for 30 to 300 s. One day after HWT and after 7 days of storage at 4 °C, CFI and remission spectroscopy were applied to evaluating temperature effects on photosynthetic activity, on contents of fruit pigments (chlorophylls, anthocyanins), and on various relevant quality parameters of intact apples. In eBraeburn f apples, short ]term HWT at °C for 30 to 120 s avoided any heat injuries and quality losses. The samples of the other three cultivars turned out to be less sensitive and may be short-term heat-treated at temperatures of up to 60 °C for the same time. CFI proved to be a rapid, sensitive, and effective tool for process optimization of apples, closely reflecting the cultivar-or batch-specificity of heat effects on produce photosynthesis. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Changes in the Spectrum of Free Fatty Acids in Blood Serum of Dairy Cows during a Prolonged Summer Heat Wave

2021, Mylostyvyi, Roman, Sejian, Veerasamy, Izhboldina, Olena, Kalinichenko, Olena, Karlova, Lina, Lesnovskay, Olena, Begma, Natalia, Marenkov, Oleh, Lykhach, Vadym, Midyk, Svitlana, Cherniy, Nikolay, Gutyj, Bogdan, Hoffmann, Gundula

This experiment was conducted to study the effect of a prolonged hot period on the fatty acid (FA) composition in blood serum of dairy cows. Eighteen multiparous Holstein cows were randomly assigned to the hyperthermia group (HYP, n = 8) in August (summer season) and the control group (CON, n = 10) in October (autumn season). Blood from animals of the HYP group was collected in one heat wave, which was preceded by a long period of heat stress (HS, temperature-humidity index (THI ≥ 72)). Blood from cows of the CON group was collected under thermal comfort conditions (THI < 68). The spectrum of free fatty acids (FFA) in the blood serum was analyzed by gas chromatography. The concentration of FFA increased, including saturated FAs and monounsaturated FAs, in the blood serum of cows under conditions of prolonged HS. This was associated with the mobilization of FA into the bloodstream from adipose tissue, as a consequence of negative energy balance. An increase in the ratio of n-6/n-3 polyunsaturated FAs may indicate biomembrane dysfunction and adversely affect dairy cows. This study showed that prolonged periods of heat can affect the FA composition of blood. How much this leads to changes in the FA composition of milk and the quality of food products remains to be seen in further research.