Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Self‐Patterning of Multifunctional Heusler Membranes by Dewetting

2021, Lünser, Klara, Diestel, Anett, Nielsch, Kornelius, Fähler, Sebastian

Ni-Mn-based Heusler alloys are an emerging class of materials which enable actuation by (magnetic) shape memory effects, magnetocaloric cooling, and thermomagnetic energy harvesting. Multifunctional materials have a particular advantage for miniaturization since their functionality is already built within the material. However, often complex microtechnological processing is required to bring these materials into shape. Here, self-organized formation of single crystalline membranes having arrays of rectangular holes with high aspect ratio is demonstrated. Dewetting avoids the need for complicated processing and allows to prepare freestanding Ni–Mn–Ga–Co membranes. These membranes are martensitic and magnetic, and their functional properties are not disturbed by self-patterning. Feature sizes of these membranes can be tailored by film thickness and heat treatment, and the tendencies can be explained with dewetting. As an outlook, the advantages of these multifunctional membranes for magnetocaloric and thermomagnetic microsystems are sketched. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Coupling Phenomena in Magnetocaloric Materials

2018-8-5, Waske, Anja, Dutta, Biswanath, Teichert, Niclas, Weise, Bruno, Shayanfar, Navid, Becker, Andreas, Hütten, Andreas, Hickel, Tilmann

Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first-order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications.

Loading...
Thumbnail Image
Item

Influencing Martensitic Transition in Epitaxial Ni-Mn-Ga-Co Films with Large Angle Grain Boundaries

2020, Lünser, Klara, Diestel, Anett, Nielsch, Kornelius, Fähler, Sebastian

Magnetocaloric materials based on field-induced first order transformations such as Ni-Mn-Ga-Co are promising for more environmentally friendly cooling. Due to the underlying martensitic transformation, a large hysteresis can occur, which in turn reduces the efficiency of a cooling cycle. Here, we analyse the influence of the film microstructure on the thermal hysteresis and focus especially on large angle grain boundaries. We control the microstructure and grain boundary density by depositing films with local epitaxy on different substrates: Single crystalline MgO(0 0 1), MgO(1 1 0) and Al2O3(0 0 0 1). By combining local electron backscatter diffraction (EBSD) and global texture measurements with thermomagnetic measurements, we correlate a smaller hysteresis with the presence of grain boundaries. In films with grain boundaries, the hysteresis is decreased by about 30% compared to single crystalline films. Nevertheless, a large grain boundary density leads to a broadened transition. To explain this behaviour, we discuss the influence of grain boundaries on the martensitic transformation. While grain boundaries act as nucleation sites, they also lead to different strains in the material, which gives rise to various transition temperatures inside one film. We can show that a thoughtful design of the grain boundary microstructure is an important step to optimize the hysteresis.

Loading...
Thumbnail Image
Item

Dissipation losses limiting first-order phase transition materials in cryogenic caloric cooling: A case study on all-d-metal Ni(-Co)-Mn-Ti Heusler alloys

2023, Beckmann, Benedikt, Koch, David, Pfeuffer, Lukas, Gottschall, Tino, Taubel, Andreas, Adabifiroozjaei, Esmaeil, Miroshkina, Olga N., Riegg, Stefan, Niehoff, Timo, Kani, Nagaarjhuna A., Gruner, Markus E., Molina-Luna, Leopoldo, Skokov, Konstantin P., Gutfleisch, Oliver

Ni-Mn-based Heusler alloys, in particular all-d-metal Ni(-Co)-Mn-Ti, are highly promising materials for energy-efficient solid-state refrigeration as large multicaloric effects can be achieved across their magnetostructural martensitic transformation. However, no comprehensive study on the crucially important transition entropy change Δst exists so far for Ni(-Co)-Mn-Ti. Here, we present a systematic study analyzing the composition and temperature dependence of Δst. Our results reveal a substantial structural entropy change contribution of approximately 65 J(kgK)-1, which is compensated at lower temperatures by an increasingly negative entropy change associated with the magnetic subsystem. This leads to compensation temperatures Tcomp of 75 K and 300 K in Ni35Co15Mn50-yTiy and Ni33Co17Mn50-yTiy, respectively, below which the martensitic transformations are arrested. In addition, we simultaneously measured the responses of the magnetic, structural and electronic subsystems to the temperature- and field-induced martensitic transformation near Tcomp, showing an abnormal increase of hysteresis and consequently dissipation energy at cryogenic temperatures. Simultaneous measurements of magnetization and adiabatic temperature change ΔTad in pulsed magnetic fields reveal a change in sign of ΔTad and a substantial positive and irreversible ΔTad up to 15 K at 15 K as a consequence of increased dissipation losses and decreased heat capacity. Most importantly, this phenomenon is universal, it applies to any first-order material with non-negligible hysteresis and any stimulus, effectively limiting the utilization of their caloric effects for gas liquefaction at cryogenic temperatures.