Search Results

Now showing 1 - 2 of 2
  • Item
    Experimental electronic structure of In2O3 and Ga2O3
    (Bristol : IOP, 2011) Janowitz, C.; Scherer, V.; Mohamed, M.; Krapf, A.; Dwelk, H.; Manzke, R.; Galazka, Z.; Uecker, R.; Irmscher, K.; Fornari, R.; Michling, M.; Schmeißer, D.; Weber, J.R.; Varley, J.B.; Van De Walle, C.G.
    Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.
  • Item
    Recent progress in the development of β-Ga2O3 scintillator crystals grown by the Czochralski method
    (Washington, DC : OSA, 2021) Drozdowski, Winicjusz; Makowski, Michał; Witkowski, Marcin E.; Wojtowicz, Andrzej J.; Irmscher, Klaus; Schewski, Robert; Galazka, Zbigniew
    A high-quality bulk single crystal of β-Ga2O3 has been grown by the Czochralski method and its basic scintillation characteristics (light yield, energy resolution, proportionality, and scintillation decay times) have been investigated. All the samples cut from the crystal show promising scintillation yields between 8400 and 8920 ph/MeV, which is a noticeable step forward compared to previous studies. The remaining parameters, i.e. the energy resolution slightly above 10% (at 662 keV) and the scintillation mean decay time just under 1 μs, are at the same level as we have formerly recognized for β-Ga2O3. The proportionality of yield seems not to deviate from standards determined by other commercial scintillators.