Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures

2021, Suhak, Yuriy, Roshchupkin, Dmitry, Redkin, Boris, Kabir, Ahsanul, Jerliu, Bujar, Ganschow, Steffen, Fritze, Holger

Electrical conductivity and acoustic loss Q−1 of single crystalline Li(Nb,Ta)O3 solid solutions (LNT) are studied as a function of temperature by means of impedance spectroscopy and resonant piezoelectric spectroscopy, respectively. For this purpose, bulk acoustic wave resonators with two different Nb/Ta ratios are investigated. The obtained results are compared to those previously reported for congruent LiNbO3. The temperature dependent electrical conductivity of LNT and LiNbO3 show similar behavior in air at high temperatures from 400 to 700 °C. Therefore, it is concluded that the dominant transport mechanism in LNT is the same as in LN, which is the Li transport via Li vacancies. Further, it is shown that losses in LNT strongly increase above about 500 °C, which is interpreted to originate from conductivity-related relaxation mechanism. Finally, it is shown that LNT bulk acoustic resonators exhibit significantly lower loss, comparing to that of LiNbO3.

Loading...
Thumbnail Image
Item

Durability of TiAl based surface acoustic wave devices for sensing at intermediate high temperatures

2023, Seifert, Marietta, Leszczynska, Barbara, Weser, Robert, Menzel, Siegfried, Gemming, Thomas, Schmidt, Hagen

TiAl based surface acoustic wave (SAW) devices, which offer a promising cheap and easy to handle wireless sensor solution for intermediate high temperatures up to 600 °C, were prepared and investigated with respect to their durability. To obtain the devices, Ti/Al multilayers were deposited on high-temperature stable piezoelectric catangasite (CTGS) substrates and structured as electrodes via the lift-off technique. AlNO cover layers and barrier layers at the substrate site served as an oxidation protection. The devices were characterized regarding their electrical behavior by ex-situ measurements of their frequency characteristics after heat treatments up to 600 °C in air. In addition, long-term in situ measurements up to 570 °C were performed to analyze a possible drift of the resonant frequency in dependence on the temperature and time. Scanning electron microscopy of the surfaces of the devices and scanning transmission electron microscopy of cross sections of TiAl interdigital transducer electrode fingers and the contact pads were conducted to check the morphology of the electrode metallization and to reveal if degradation or oxidation processes occurred during the heat treatments. The results demonstrated a sufficient high-temperature stability of the TiAl based devices after a first conditioning of system. A linear dependence of the resonant frequency on the temperature of about −37 ppm/K was observed. In summary, the suitability of TiAl based SAW sensors for long-term application at intermediate temperatures was proven.

Loading...
Thumbnail Image
Item

Electroless-deposited platinum antennas for wireless surface acousticwave sensors

2019, Brachmann, E., Seifert, M., Neumann, N., Alshwawreh, N., Uhlemann, M., Menzel, S.B., Acker, J., Herold, S., Hoffmann, V., Gemming, T.

In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ -Al2O3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 °C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.

Loading...
Thumbnail Image
Item

Long-term high-temperature behavior of Ti–Al based electrodes for surface acoustic wave devices

2022, Seifert, Marietta, Leszczynska, Barbara, Menzel, Siegfried, Gemming, Thomas

The long-term high-temperature behavior of Ti–Al based electrodes for the application in surface acoustic wave (SAW) sensor devices was analyzed. The electrodes were obtained by e-beam evaporation of Ti/Al multilayers on the high-temperature stable piezoelectric Ca3TaGa3Si2O14 (CTGS) substrates and structuring via the lift-off process. AlNO (25 at.% Al; 60 at.% N and 15 at.% O) cover and barrier layers were applied as protection against oxidation from the surrounding atmosphere and to prohibit a chemical reaction with the substrate. The samples were annealed at temperatures up to 600 °C in air for a duration of up to 192 h. Scanning and transmission electron microscopy were used to evaluate the morphology and degradation of the electrodes as well as of the extended contact pads. The results revealed that the Ti–Al based electrodes remained unoxidized after annealing for 192 h at 400 and 500 °C and for 24 h at 600 °C. After the heat treatment for 192 h at 600 °C, a strong oxidation of the structured electrodes occurred, which was less pronounced within the pads. In summary, the investigation showed that Ti–Al based SAW devices are a cost efficient alternative for long-term applications up to at least 500 °C and short- and medium-term applications up to 600 °C.