Search Results

Now showing 1 - 2 of 2
  • Item
    SPION@polydehydroalanine hybrid particles
    (London : RSC Publishing, 2015) von der Lühe, Moritz; Günther, Ulrike; Weidner, Andreas; Gräfe, Christine; Clement, Joachim H.; Dutz, Silvio; Schacher, Felix H.
    It is generally accepted that a protein corona is rapidly formed upon exposure of nanoparticles to biological fluids and that both the amount and the composition of adsorbed proteins affect the dispersion properties of the resulting particles. Hereby, the net charge and overall charge density of the pristine nanoparticles are supposed to play a crucial role. In an attempt to control both charge and charge distribution, we report on the coating of superparamagnetic iron oxide nanoparticles (SPIONs) with different polyelectrolytes. Starting from orthogonally protected polydehydroalanine, the material can be easily transformed into a polyanion (poly(tert-butoxycarbonyl acrylic acid), PtBAA), polycation (poly(aminomethylacrylate), PAMA), or even a polyzwitterion (polydehydroalanine, PDha). While coating of SPIONs with PtBAA and PDha was shown to be successful, approaches using PAMA have failed so far. The dispersion properties of the resulting hybrid particles have been investigated using dynamic light scattering (DLS), zeta-potential, and TEM measurements – the amount of adsorbed polymer was quantified using vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA).
  • Item
    Reversible Conductive Inkjet Printing of Healable and Recyclable Electrodes on Cardboard and Paper
    (Weinheim : Wiley-VCH Verlag, 2020) Kang, D.J.; Jüttke, Y.; González-García, L.; Escudero, A.; Haft, M.; Kraus, T.
    Conductive inkjet printing with metal nanoparticles is irreversible because the particles are sintered into a continuous metal film. The resulting structures are difficult to remove or repair and prone to cracking. Here, a hybrid ink is used to obviate the sintering step and print interconnected particle networks that become highly conductive immediately after drying. It is shown that reversible conductive printing is possible on low-cost cardboard samples after applying standard paper industry coats that are adapted in terms of surface energy and porosity. The conductivity of the printed films approaches that of sintered standard inks on the same substrate, but the mobility of the hybrid particle film makes them less sensitive to cracks during bending and folding of the substrate. Damages that occur can be partially repaired by wetting the film such that particle mobility is increased and particles move to bridge insulating gaps in the film. It is demonstrated that the conductive material can be recovered from the cardboard at the end of its life time and be redispersed to recycle the particles and reuse them in conductive inks.