Search Results

Now showing 1 - 3 of 3
  • Item
    Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate
    (Fort Collins, Colo. : [Verlag nicht ermittelbar], 2018) Collalti, Alessio; Trotta, Carlo; Keenan, Trevor F.; Ibrom, Andreas; Bond‐Lamberty, Ben; Grote, Ruediger; Vicca, Sara; Reyer, Christopher P. O.; Migliavacca, Mirco; Veroustraete, Frank; Anav, Alessandro; Campioli, Matteo; Scoccimarro, Enrico; Šigut, Ladislav; Grieco, Elisa; Cescatti, Alessandro; Matteucci, Giorgio
    Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
  • Item
    Climate impact emergence and flood peak synchronization projections in the Ganges, Brahmaputra and Meghna basins under CMIP5 and CMIP6 scenarios
    (Bristol : IOP Publ., 2022) Gädeke, Anne; Wortmann, Michel; Menz, Christoph; Islam, AKM Saiful; Masood, Muhammad; Krysanova, Valentina; Lange, Stefan; Hattermann, Fred Fokko
    The densely populated delta of the three river systems of the Ganges, Brahmaputra and Meghna is highly prone to floods. Potential climate change-related increases in flood intensity are therefore of major societal concern as more than 40 million people live in flood-prone areas in downstream Bangladesh. Here we report on new flood projections using a hydrological model forced by bias-adjusted ensembles of the latest-generation global climate models of CMIP6 (SSP5-8.5/SSP1-2.6) in comparison to CMIP5 (RCP8.5/RCP2.6). Results suggest increases in peak flow magnitude of 36% (16%) on average under SSP5-8.5 (SSP1-2.6), compared to 60% (17%) under RCP8.5 (RCP2.6) by 2070-2099 relative to 1971-2000. Under RCP8.5/SSP5-8.5 (2070-2099), the largest increase in flood risk is projected for the Ganges watershed, where higher flood peaks become the ‘new norm’ as early as mid-2030 implying a relatively short time window for adaptation. In the Brahmaputra and Meghna rivers, the climate impact signal on peak flow emerges after 2070 (CMIP5 and CMIP6 projections). Flood peak synchronization, when annual peak flow occurs simultaneously at (at least) two rivers leading to large flooding events within Bangladesh, show a consistent increase under both projections. While the variability across the ensemble remains high, the increases in flood magnitude are robust in the study basins. Our findings emphasize the need of stringent climate mitigation policies to reduce the climate change impact on peak flows (as presented using SSP1-2.6/RCP2.6) and to subsequently minimize adverse socioeconomic impacts and adaptation costs. Considering Bangladesh’s high overall vulnerability to climate change and its downstream location, synergies between climate change adaptation and mitigation and transboundary cooperation will need to be strengthened to improve overall climate resilience and achieve sustainable development.
  • Item
    The critical role of the routing scheme in simulating peak river discharge in global hydrological models
    (Bristol : IOP Publishing, 2017) Zhao, Fang; Veldkamp, Ted I.E.; Frieler, Katja; Schewe, Jacob; Ostberg, Sebastian; Willner, Sven; Schauberger, Bernhard; Gosling, Simon N.; Müller Schmied, Hannes; Portmann, Felix T.; Leng, Guoyong; Huang, Maoyi; Liu, Xingcai; Tang, Qiuhong; Hanasaki, Naota; Biemans, Hester; Gerten, Dieter; Satoh, Yusuke; Pokhrel, Yadu; Stacke, Tobias; Ciais, Philippe; Chang, Jinfeng; Ducharne, Agnes; Guimberteau, Matthieu; Wada, Yoshihide; Kim, Hyungjun; Yamazaki, Dai
    Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971–2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.