Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

OGHReS: Large-scale filaments in the outer Galaxy

2021, Colombo, D., König, C., Urquhart, J. S., Wyrowski, F., Mattern, M., Menten, K. M., Lee, M.-Y., Brand, J., Wienen, M., Mazumdar, P., Schuller, F., Leurini, S.

Filaments are a ubiquitous morphological feature of the molecular interstellar medium and are identified as sites of star formation. In recent years, more than 100 large-scale filaments (with a length > 10 pc) have been observed in the inner Milky Way. As they appear linked to Galactic dynamics, studying those structures represents an opportunity to link kiloparsec-scale phenomena to the physics of star formation, which operates on much smaller scales. In this Letter, we use newly acquired Outer Galaxy High Resolution Survey (OGHReS) 12CO(2-1) data to demonstrate that a significant number of large-scale filaments are present in the outer Galaxy as well. The 37 filaments identified appear tightly associated with inter-arm regions. In addition, their masses and linear masses are, on average, one order of magnitude lower than similar-sized molecular filaments located in the inner Galaxy, showing that Milky Way dynamics is able to create very elongated features in spite of the lower gas supply in the Galactic outskirts.

Loading...
Thumbnail Image
Item

Dispersion measure variability for 36 millisecond pulsars at 150MHz with LOFAR

2020, Donner, J.Y., Verbiest, J.P.W., Tiburzi, C., Osłowski, S., Künsemöller, J., Bak Nielsen, A.-S., Grießmeier, J.-M., Serylak, M., Kramer, M., Anderson, J.M., Wucknitz, O., Keane, E., Kondratiev, V., Sobey, C., McKee, J.W., Bilous, A.V., Breton, R.P., Brüggen, M., Ciardi, B., Hoeft, M., van Leeuwen, J., Vocks, C.

Context. Radio pulses from pulsars are affected by plasma dispersion, which results in a frequency-dependent propagation delay. Variations in the magnitude of this effect lead to an additional source of red noise in pulsar timing experiments, including pulsar timing arrays (PTAs) that aim to detect nanohertz gravitational waves. Aims. We aim to quantify the time-variable dispersion with much improved precision and characterise the spectrum of these variations. Methods. We use the pulsar timing technique to obtain highly precise dispersion measure (DM) time series. Our dataset consists of observations of 36 millisecond pulsars, which were observed for up to 7.1 yr with the LOw Frequency ARray (LOFAR) telescope at a centre frequency of ~150 MHz. Seventeen of these sources were observed with a weekly cadence, while the rest were observed at monthly cadence. Results. We achieve a median DM precision of the order of 10−5 cm−3 pc for a significant fraction of our sources. We detect significant variations of the DM in all pulsars with a median DM uncertainty of less than 2 × 10−4 cm−3 pc. The noise contribution to pulsar timing experiments at higher frequencies is calculated to be at a level of 0.1–10 μs at 1.4 GHz over a timespan of a few years, which is in many cases larger than the typical timing precision of 1 μs or better that PTAs aim for. We found no evidence for a dependence of DM on radio frequency for any of the sources in our sample. Conclusions. The DM time series we obtained using LOFAR could in principle be used to correct higher-frequency data for the variations of the dispersive delay. However, there is currently the practical restriction that pulsars tend to provide either highly precise times of arrival (ToAs) at 1.4 GHz or a high DM precision at low frequencies, but not both, due to spectral properties. Combining the higher-frequency ToAs with those from LOFAR to measure the infinite-frequency ToA and DM would improve the result.

Loading...
Thumbnail Image
Item

Probing the structure of a massive filament: ArTéMiS 350 and 450 μm mapping of the integral-shaped filament in Orion A

2021, Schuller, F., André, Ph., Shimajiri, Y., Zavagno, A., Peretto, N., Arzoumanian, D., Csengeri, T., Könyves, V., Palmeirim, P., Pezzuto, S., Rigby, A., Roussel, H., Ajeddig, H., Dumaye, L., P. Gallais, P., Le Pennec, J., Martignac, J., Mattern, M., Revéret, V., Rodriguez, L., Talvard, M.

Context. The Orion molecular cloud is the closest region of high-mass star formation. It is an ideal target for investigating the detailed structure of massive star-forming filaments at high resolution and the relevance of the filament paradigm for the earliest stages of intermediate- to high-mass star formation. Aims. Within the Orion A molecular cloud, the integral-shaped filament (ISF) is a prominent, degree-long structure of dense gas and dust with clear signs of recent and ongoing high-mass star formation. Our aim is to characterise the structure of this massive filament at moderately high angular resolution (8′′ or ~0.016 pc) in order to measure the intrinsic width of the main filament, down to scales well below 0.1 pc, which has been identified as the characteristic width of filaments. Methods. We used the ArTéMiS bolometer camera at APEX to map a ~0.6 × 0.2 deg2 region covering OMC-1, OMC-2, and OMC-3 at 350 and 450 μm. We combined these data with Herschel-SPIRE maps to recover extended emission. The combined Herschel-ArTéMiS maps provide details on the distribution of dense cold material, with a high spatial dynamic range, from our 8′′ resolution up to the transverse angular size of the map, ~10-15′. By combining Herschel and ArTéMiS data at 160, 250, 350, and 450 μm, we constructed high-resolution temperature and H2 column density maps. We extracted radial intensity profiles from the column density map in several representative portions of the ISF, which we fitted with Gaussian and Plummer models to derive their intrinsic widths. We also compared the distribution of material traced by ArTéMiS with that seen in the higher-density tracer N2H+(1-0) that was recently observed with the ALMA interferometer. Results. All the radial profiles that we extracted show a clear deviation from a Gaussian, with evidence for an inner plateau that had not previously been seen clearly using Herschel-only data. We measure intrinsic half-power widths in the range 0.06-0.11 pc. This is significantly larger than the Gaussian widths measured for fibres seen in N2H+, which probably only traces the dense innermost regions of the large-scale filament. These half-power widths are within a factor of two of the value of ~0.1 pc found for a large sample of nearby filaments in various low-mass star-forming regions, which tends to indicate that the physical conditions governing the fragmentation of pre-stellar cores within transcritical or supercritical filaments are the same over a large range of masses per unit length. © F. Schuller et al. 2021.