Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

2017-3-1, Hengst, Claudia, Menzel, Siegfried B., Rane, Gayatri K., Smirnov, Vladimir, Wilken, Karen, Leszczynska, Barbara, Fischer, Dustin, Prager, Nicole

The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.

Loading...
Thumbnail Image
Item

Belastungs- und Zuverlässigkeitsuntersuchungen im Verbundprojekt: Entwicklung und Untersuchung der Beschichtung von Folienbändern mit Kontakten, Barrieren und Solarzellen - (Akronym: Flexsol) : Abschlussbericht ; Laufzeit: 01.10.2012-30.09.2015

2016, Menzel, Siegfried, Hengst, Claudia

Silizium basierte Dünnschichtsolarzellen auf flexiblen Substraten sind eine vielversprechende Alternative für zukünftige Photovoltaikanwendungen. Sie können in großen Stückzahlen im Rolle-zu-Rolle-Verfahren auf großen Flächen und unter Verwendung von sehr kostengünstigen Polymersubstraten und bei niedrigen Temperaturen hergestellt werden. Das Ziel des Teilvorhabens „Belastungs- und Zuverlässigkeitsuntersuchungen“ waren experimentelle und theoretische Untersuchungen zum statischen bzw. dynamischen Belastungsverhalten von relevanten, flexiblen Schicht-Substratfolie-Verbunden bzw. Solarzellen-Substratfolie-Verbunden bei Raumtemperatur sowie bei erhöhten, prozessrelevanten Temperaturen bis 140°C. Ein Arbeitsschwerpunkt waren dabei zyklische Biegebelastungsexperimente unter Verwendung einer unikalen, im Projektverlauf entwickelten Biegeapparatur, um die kritischen Biegeparameter (kritische Zyklenzahl bis zum Ausfall durch Rissbildung, kritische Biegeradien und Temperatur- bzw. Dehnungsobergrenzen) und damit Lebensdauern solcher Schicht-Substratfolie-Verbunde abschätzen zu können. Wichtige, das thermo-mechanische Verhalten des Verbundes bestimmende Dünnschichteigenschaften, wie die Schichtmorpho-logie, der Elastizitätsmodul, die intrinsischen Schichtspannungen sowie die Schichtlastspannungen wurden für Einzelschichten der Materialien a-Si:H, InSnOx (ITO) und ZnSnOx (ZTO) sowie für Mehrlagensysteme der Dünnschichtsolarzelle auf flexiblen Polyethylenterephathalat (PET)-Substratfolien umfassend untersucht und in Abhängigkeit der bei der Herstellung verwendeten Prozessparameter und Schichtparameter (Schichtdicke, Material etc.) diskutiert. Des weiteren wurden das statische und zyklische Belastungsverhalten (einachsige Zugbelastung, Biegebelastung) relevanter Schicht-Substratfolie-Verbunde sowie von kompletten Solarzellen untersucht. Damit konnte ein signifikanter Beitrag zum Verständnis des Verhaltens und der Performance von flexiblen Einzelschicht- bzw. Schichtstapel-Substratfolie-Verbunde und der kompletter Solarzellverbunde unter thermisch-mechanischer Belastung für Anwendungen beispielsweise auf gekrümmten Oberflächen geleistet werden. Diese Erkenntnisse sind von herausragender Bedeutung für flexible Dünnschichtsolarzellen auf Polymersubstraten und waren aus der Literatur bislang nicht bekannt. Darüber hinaus flossen die Ergebnisse des Teilprojekts ein in die Arbeiten der Projektpartner des Verbundprojekts beispielsweise in Form der Formulierung kritischen Prozessparameter (z.B. kritische Vorspannkraft, kritische Biegeradien, Art der Folieneinspannung und Folienführung) und die Anlagendimensionierung für den Rolle-zu-Rolle-Herstellungsprozesses.

Loading...
Thumbnail Image
Item

Growth, fabrication, and investigation of light-emitting diodes based on GaN nanowires

2016, Musolino, Mattia

Diese Arbeit gibt einen tiefgehenden Einblick in verschiedene Aspekte von auf (In,Ga)N/GaN Heterostrukturen basierenden Leuchtdioden (LEDs), mittels Molekularstrahlepitaxie entlang der Achse von Nanodrähten (NWs) auf Si Substraten gewachsen. Insbesondere wurden die Wachstumsparameter angepasst, um eine Koaleszierung der Nanodrähte zu vermindern. Auf diese Weise konnte die durch die NW-LEDs emittierte Intensität der Photolumineszenz (PL) um einen Faktor zehn erhöht werden. Die opto-elektronischen Eigenschaften von NW-LEDs konnten durch die Verwendung von Indiumzinoxid, anstatt von Ni/Au als Frontkontakt, verbessert werden. Zudem wurde demonstriert, dass auch selektives Wachstum (SAG) von GaN NWs auf AlN gepufferten Si Substraten mit einer guten Leistungsfähigkeit von Geräte vereinbar ist und somit als Wegbereiter für eine neue Generation von NW-LEDs auf Si dienen kann. Weiterhin war es möglich, strukturierte Felder von ultradünnen NWs durch SAG und thermische in situ Dekomposition herzustellen. In den durch die NW-LEDs emittierten Elektrolumineszenzspektren (EL) wurde eine Doppellinenstruktur beobachtet, die höchstwahrscheinlich von den kompressiven Verspannungen im benachbarten Quantentopf, durch die Elektronensperrschicht verursachten, herrührt. Die Analyse von temperaturabhängigen PL- und EL-Messungen zeigt, dass Ladungsträgerlokalisierungen nicht ausschlaggebend für die EL-Emission von NW-LEDs sind. Die Strom-Spannungs-Charakteristiken (I-V) von NW-LEDs unter Vorwärtsspannung wurden mittels eines Modells beschrieben, in das die vielkomponentige Natur der LEDs berücksichtigt wird. Die unter Rückwärtsspannung aktiven Transportmechanismen wurden anhand von Kapazitätstransientenmessungen und temperaturabhänigigen I-V-Messungen untersucht. Dann wurde ein physikalisches Modell zur quantitativen Beschreibung der besonderen I-V-T Charakteristik der untersuchten NW-LEDs entwickelt.

Loading...
Thumbnail Image
Item

Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics

2019, Serkov, A.A., Snelling, H.V., Heusing, S., Amaral, T.M.

Tin doped indium oxide (ITO) thin films provide excellent transparency and conductivity for electrodes in displays and photovoltaic systems. Current advances in producing printable ITO inks are reducing the volume of wasted indium during thin film patterning. However, their applicability to flexible electronics is hindered by the need for high temperature processing that results in damage to conventional polymer substrates. Here, we detail the conditions under which laser heating can be used as a replacement for oven and furnace treatments. Measurements of the optical properties of both the printed ITO film and the polymer substrate (polyethylene terephthalate, PET) identify that in the 1.5–2.0 μm wavelength band there is absorption in the ITO film but good transparency in PET. Hence, laser light that is not absorbed in the film does not go on to add a deleterious energy loading to the substrate. Localization of the energy deposition in the film is further enhanced by using ultrashort laser pulses (~1 ps) thus limiting heat flow during the interaction. Under these conditions, laser processing of the printed ITO films results in an improvement of the conductivity without damage to the PET. © 2019, The Author(s).