Search Results

Now showing 1 - 2 of 2
  • Item
    Periodic Exposure of Keratinocytes to Cold Physical Plasma: An In Vitro Model for Redox-Related Diseases of the Skin
    (London: Hindawi, 2016) Schmidt, Anke; von Woedtke, Thomas; Bekeschus, Sander
    Oxidative stress illustrates an imbalance between radical formation and removal. Frequent redox stress is critically involved in many human pathologies including cancer, psoriasis, and chronic wounds. However, reactive species pursue a dual role being involved in signaling on the one hand and oxidative damage on the other. Using a HaCaT keratinocyte cell culture model, we investigated redox regulation and inflammation to periodic, low-dose oxidative stress after two, six, eight, ten, and twelve weeks. Chronic redox stress was generated by recurrent incubation with cold physical plasma-treated cell culture medium. Using transcriptome microarray technology, we identified both acute ROS-stress responses as well as numerous adaptions after several weeks of redox challenge. We determined a differential expression (2-fold, FDR < 0.01, p < 0.05) of 260 genes that function in inflammation and redox homeostasis, such as cytokines (e.g., IL-6, IL-8, and IL-10), growth factors (e.g., CSF2, FGF, and IGF-2), and antioxidant enzymes (e.g., HMOX, NQO1, GPX, and PRDX). Apoptotic signaling was affected rather modestly, especially in p53 downstream targets (e.g., BCL2, BBC3, and GADD45). Strikingly, the cell-protective heat shock protein HSP27 was strongly upregulated (p < 0.001). These results suggested cellular adaptions to frequent redox stress and may help to better understand the inflammatory responses in redox-related diseases.
  • Item
    Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2020) Yang, Ying; Gao, Peng; Wang, Juan; Tu, Qiufen; Bai, Long; Xiong, Kaiqin; Qiu, Hua; Zhao, Xin; Maitz, Manfred F.; Wang, Huaiyu; Li, Xiangyang; Zhao, Qiang; Xiao, Yin; Huang, Nan; Yang, Zhilu
    Stenting is currently the major therapeutic treatment for cardiovascular diseases. However, the nonbiogenic metal stents are inclined to trigger a cascade of cellular and molecular events including inflammatory response, thrombogenic reactions, smooth muscle cell hyperproliferation accompanied by the delayed arterial healing, and poor reendothelialization, thus leading to restenosis along with late stent thrombosis. To address prevalence critical problems, we present an endothelium-mimicking coating capable of rapid regeneration of a competently functioning new endothelial layer on stents through a stepwise metal (copper)-catechol-(amine) (MCA) surface chemistry strategy, leading to combinatorial endothelium-like functions with glutathione peroxidase-like catalytic activity and surface heparinization. Apart from the stable nitric oxide (NO) generating rate at the physiological level (2:2 × 10a'10 mol/cm2/min lasting for 60 days), this proposed strategy could also generate abundant amine groups for allowing a high heparin conjugation efficacy up to ∼1 μg/cm2, which is considerably higher than most of the conventional heparinized surfaces. The resultant coating could create an ideal microenvironment for bringing in enhanced antithrombogenicity, anti-inflammation, anti-proliferation of smooth muscle cells, re-endothelialization by regulating relevant gene expressions, hence preventing restenosis in vivo. We envision that the stepwise MCA coating strategy would facilitate the surface endothelium-mimicking engineering of vascular stents and be therefore helpful in the clinic to reduce complications associated with stenosis. © 2020 American Association for the Advancement of Science. All rights reserved.