Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Robust transverse structures in rescattered photoelectron wavepackets and their consequences

2020, Bredtmann, T., Patchkovskii, S.

Initial-state symmetry has been under-appreciated in strong-field spectroscopies, where laser fields dominate the dynamics. We demonstrate numerically that the transverse photoelectron phase structure, arising from the initial-state symmetry, is robust in strong-field rescattering, and has pronounced effects on strong-field photoelectron spectra. Interpretation of rescattering experiments need to take these symmetry effects into account. In turn, robust transverse photoelectron phase structures may enable attosecond sub-Ångström super-resolution imaging with structured electron beams.

Loading...
Thumbnail Image
Item

Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks

2018, Perez-Leija, Armando, Guzmán-Silva, Diego, León-Montiel, Roberto de J., Gräfe, Markus, Heinrich, Matthias, Moya-Cessa, Hector, Busch, Kurt, Szameit, Alexander

Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.