Search Results

Now showing 1 - 2 of 2
  • Item
    Single-shot interferometric measurement of pulse-to-pulse stability of absolute phase using a time-stretch technique
    (Washington, DC : Soc., 2021) Kudelin, Igor; Sugavanam, Srikanth; Chernysheva, Maria
    Measurement of the absolute phase of ultrashort optical pulses in real-time is crucial for various applications, including frequency comb and high-field physics. Modern single-shot techniques, such as dispersive Fourier transform and time-lens, make it possible to investigate non-repetitive spectral dynamics of ultrashort pulses yet do not provide the information on absolute phase. In this work, we demonstrate a novel approach to characterise single-shot pulse-to-pulse stability of the absolute phase with the acquisition rate of 15 MHz. The acquisition rate, limited by the repetition rate of the used free-running mode-locked Erbium-doped fibre laser, substantially exceeds one of the traditional techniques. The method is based on the time-stretch technique. It exploits a simple all-fibre Mach-Zehnder interferometric setup with a remarkable resolution of ∼7.3 mrad. Using the proposed method, we observed phase oscillations in the output pulses governed by fluctuations in the pulse intensity due to Kerr-induced self-phase modulation at frequencies peaked at 4.6 kHz. As a proof-of-concept application of the demonstrated interferometric methodology, we evaluated phase behaviour during vibration exposure on the laser platform. The results propose a new view on the phase measurements that provide a novel avenue for numerous sensing applications with MHz data frequencies.
  • Item
    High-visibility photonic crystal fiber interferometer as multifunctional sensor
    (Basel : MDPI AG, 2013) Cárdenas-Sevilla, G.A.; Fávero, F.C.; Villatoro, J.
    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5.