Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Engineering Kitaev exchange in stacked iridate layers: Impact of inter-layer species on in-plane magnetism

2019, Yadav, R., Eldeeb, M.S., Ray, R., Aswartham, S., Sturza, M.I., Nishimoto, S., Van Den Brink, J., Hozoi, L.

Novel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MOp and M′Oq. The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature - charge imbalance between the M and M′ cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.

Loading...
Thumbnail Image
Item

Anion and ether group influence in protic guanidinium ionic liquids

2023, Rauber, Daniel, Philippi, Frederik, Becker, Julian, Zapp, Josef, Morgenstern, Bernd, Kuttich, Björn, Kraus, Tobias, Hempelmann, Rolf, Hunt, Patricia, Welton, Tom, Kay, Christopher W. M.

Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.

Loading...
Thumbnail Image
Item

On Silylated Oxonium and Sulfonium Ions and Their Interaction with Weakly Coordinating Borate Anions

2019, Bläsing, Kevin, Labbow, Rene, Michalik, Dirk, Reiß, Fabian, Schul, Axel, Villinger, Alexander, Walker, Svenja

Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB−=carborate=[CHB11H5Cl6]−, [CHB11Cl11]−) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4]− and [CB]− salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Sacrificial ligand route to hybrid polythiophene-silver nanoparticles for sinter-free conductive inks

2023, Drzic, Juraj, Escudero, Alberto, González-García, Lola, Kraus, Tobias

We report the synthesis of AgNP@PEDOT:PSS hybrid conductive particles with silver cores and polythiophene shells that can be used to formulate sinter-free inks for printing electronics. First, Ag nanocrystals capped with the weakly bound ligand aminohexanoic acid (ϵ-Ahx) are prepared. The ligand shell is exchanged by reacting the dispersion with the polymer ionomer mixture poly(3,4-ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS). The particles are characterized by electron microscopy, dynamic light scattering, Z potential, and Raman spectroscopy, confirming the replacement of the ligands on the metal particle surface. The resulting dispersion is colloidally stable as confirmed by DLS. Inks with a solid content of the hybrid particles of 300 mg mL−1 were prepared and deposited on different substrates. The new particles are components for hybrid inks that become electrically conductive without any chemical or thermal post-deposition treatment. We show that silver-based hybrid inks can be deposited on different substrates and possess an average conductivity after 24 h of drying at room temperature of 1.726 × 106 S m−1 ± 0.326 × 106 S m−1, only one order of magnitude lower than elemental silver and within the same order of magnitude as their gold ink counterpart.

Loading...
Thumbnail Image
Item

Large-area wet-chemical deposition of nanoporous tungstic silica coatings

2015, Nielsen, K.H., Wondraczek, K., Schubert, U.S., Wondraczek, L.

We report on a facile procedure for synthesis of nanoporous coatings of tungstic silica through wet-chemical deposition and post-treatment of tungsten-doped potassium silicate solutions. The process relies on an aqueous washing and ion exchange step where dispersed potassium salt deposits are removed from a 150 nm silicate gel layer. Through an adjustment of the pH value of the washing agent within the solubility regime of a tungstic salt precursor, the tungsten content of the remaining nanostructured coating can be controlled. We propose this route as a universal approach for the deposition of large-area coatings of nanoporous silica with the potential for incorporating a broad variety of other dopant species. As for the present case, we observe, on the one hand, antireflective properties which enable the reduction of reflection losses from float glass by up to 3.7 percent points. On the other hand, the incorporation of nanoscale tungstic precipitates provides a lever for tailoring the coating hydrophilicity and, eventually, also surface acidity. This may provide a future route for combining optical performance with anti-fouling functionality.

Loading...
Thumbnail Image
Item

Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater

2019, Srimuk, P., Husmann, S., Presser, V.

Technologies for the effective and energy efficient removal of salt from saline media for advanced water remediation are in high demand. Capacitive deionization using carbon electrodes is limited to highly diluted salt water. Our work demonstrates the high desalination performance of the silver/silver chloride conversion reaction by a chloride ion rocking-chair desalination mechanism. Silver nanoparticles are used as positive electrodes while their chlorination into AgCl particles produces the negative electrode in such a combination that enables a very low cell voltage of only Δ200 mV. We used a chloride-ion desalination cell with two flow channels separated by a polymeric cation exchange membrane. The optimized electrode paring between Ag and AgCl achieves a low energy consumption of 2.5 kT per ion when performing treatment with highly saline feed (600 mM NaCl). The cell affords a stable desalination capacity of 115 mg g-1 at a charge efficiency of 98%. This performance aligns with a charge capacity of 110 mA h g-1. © The Royal Society of Chemistry.