Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy

2012, Roth, C., Chatzipapadopoulos, S., Kerlé, D., Friedriszik, F., Lütgens, M., Lochbrunner, S., Kühn, O., Ludwig, R.

Three imidazolium-based ionic liquids of the type [Cnmim] [NTf2] with different alkyl chain lengths (n = 1, 2 and 8) at the first position of the imidazolium ring were studied applying infrared, linear Raman and multiplex coherent anti-Stokes Raman scattering spectroscopy. The focus has been on the CH-stretching region of the imidazolium ring, which is supposed to carry information about a possible hydrogen bonding network in the ionic liquid. The measurements are compared with calculations of the corresponding anharmonic vibrational spectra for a cluster of [C 2mim][NTf2] consisting of four ion pairs. The results support the hypothesis of weak hydrogen bonding involving the C(4)-H and C(5)-H groups and somewhat stronger hydrogen bonds of the C(2)-H groups.

Loading...
Thumbnail Image
Item

Hexacyanidosilicates with Functionalized Imidazolium Counterions

2020, Harloff, Jörg, Laatz, Karoline Charlotte, Lerch, Swantje, Schulz, Axel, Stoer, Philip, Strassner, Thomas, Villinger, Alexander

Functionalized imidazolium cations were combined with the hexacyanidosilicate anion, [Si(CN)6]2–, by salt metathesis reactions with K2[Si(CN)6], yielding novel ionic compounds of the general formula [R–Ph(nBu)Im]2[Si(CN)6] {R = 2-Me (1), 4-Me (2), 2,4,6-Me = Mes (3), 2-MeO (4), 2,4-F (5), 4-Br (6); Im = imidazolium}. All synthesized imidazolium hexacyanidosilicates decompose upon thermal treatment above 95 °C (96 – 164 °C). Furthermore, the hexa-borane-adduct [Mes(nBu)Im]2{Si[(CN)B(C6F5)3]6}·6CH2Cl2 (7), which is thermally stable up to 215 °C, was obtained from the reaction of 3 with Lewis acidic B(C6F5)3. In CH3CN solution, decomposition of the hexaadduct to the Lewis-acid-base adduct CH3CN–B(C6F5)3 and [(C6F5)3B·(µ-CN)·B(C6F5)3]– was observed. All synthesized compounds were isolated in good yields and were completely characterized including single crystal structure elucidations. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

On the dissociation degree of ionic solutions considering solvation effects

2017, Landstorfer, Manuel

In this work the impact of solvation effects on the dissociation degree of strong electrolytes and salts is discussed. The investigation is based on a thermodynamic model which is capable to predict qualitatively and quantitatively the double layer capacity of various electrolytes. A remarkable relationship between capacity maxima, partial molar volume of ions in solution, and solvation numbers, provides an experimental access to determine the number of solvent molecules bound to a specific ion in solution. This shows that the Stern layer is actually a saturated solution of 1 mol L 1 solvated ions, and we point out some fundamental similarities of this state to a saturated bulk solution. Our finding challenges the assumption of complete dissociation, even for moderate electrolyte concentrations, whereby we introduce an undissociated ion-pair in solution. We re-derive the equilibrium conditions for a two-step dissociation reaction, including solvation effects, which leads to a new relation to determine the dissociation degree. A comparison to Ostwalds dilution law clearly shows the shortcomings when solvation effects are neglected and we emphasize that complete dissociation is questionable beyond 0.5 mol L 1 for aqueous, mono-valent electrolytes.