Search Results

Now showing 1 - 10 of 15
  • Item
    Stability studies of ionic liquid [EMIm][NTf2] under short-term thermal exposure
    (London : RSC Publishing, 2016) Neise, Christin; Rautenberg, Christine; Bentrup, Ursula; Beck, Martin; Ahrenberg, Mathias; Schick, Christoph; Keßler, Olaf; Kragl, Udo
    Ionic liquids (ILs) as new media for synthesis and as functional fluids in technical applications are still of high interest. Cooling a steel component from an annealing temperature of nearly 850 °C down to room temperature in a liquid bath is a technically important process. The use of ionic liquids offers advantages avoiding film boiling of the quenching medium. However, such a high immersion temperature exceeds the thermal stability of the IL, for example such as [EMIm][NTf2]. To obtain information about formation of potential toxic decomposition products, potential fragments at varied states of decomposition of [EMIm][NTf2] were studied by various spectroscopic and gravimetric methods. For the first time it was possible to quantify fluorine-containing products via mass spectrometry coupled directly with thermogravimetric (TG) measurements. While chemical and spectroscopic analysis of thermally stressed ILs revealed no hints concerning changes of composition after quenching hot steel for several times, the mass-spectrometer (MS) coupled TG analysis gives information by comparing the decomposition behaviour of fresh and used ILs. A number of fragments were detected in low amounts confirming the proposed decomposition mechanism.
  • Item
    Influence of water on tribolayer growth when lubricating steel with a fluorinated phosphonium dicyanamide ionic liquid
    (Basel : MDPI, 2019) Urtis, L.A.; Arcifa, A.; Zhang, P.; Du, J.; Fantauzzi, M.; Rauber, D.; Hempelmann, R.; Kraus, T.; Rossi, A.; Spencer, N.D.
    This work aims to elucidate the role of environmental humidity on the tribological behavior of steel surfaces lubricated with an ionic liquid comprised of a fluorinated phosphonium cation-tributyl-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl-phosphonium-and a dicyanamide anion (i.e. N(CN) 2 - ). Ball-on-disk tribotests were carried out at room temperature and at various levels of relative humidity (RH). Water was found to be required to promote the formation of a tribofilm over the contact area. The reaction layer exhibited a patchy morphology, which resembles that observed formed with conventional antiwear additives such as ZnDTP. A surface-chemical analysis of the tribofilm indicated that the tribofilm is composed of fluorides, oxides, and phosphates, pointing to a stress-induced degradation of the ions and corrosion of the sliding counterparts, which is enabled by the presence of water at the sliding interface. © 2019 by the authors.
  • Item
    Curled cation structures accelerate the dynamics of ionic liquids
    (Cambridge : RSC Publ., 2021) Rauber, Daniel; Philippi, Frederik; Kuttich, Björn; Becker, Julian; Kraus, Tobias; Hunt, Patricia; Welton, Tom; Hempelmann, Rolf; Kay, Christopher W.M.
    Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids – slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation–anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure–property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure–property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.
  • Item
    New Low-Melting Triply Charged Homoleptic Cr(III)-Based Ionic Liquids in Comparison to Their Singly Charged Heteroleptic Analogues
    (Basel : MDPI AG, 2021) Peppel, Tim; Köckerling, Martin
    A series of new low-melting triply charged homoleptic Cr(III)-based ionic liquids of the general formula (RMIm)3[Cr(NCS)6] (R = methyl, ethyl, n-butyl, benzyl) is reported. Their syntheses and properties are described in comparison to their singly charged heteroleptic analogues of the general formula (RMIm)[Cr(NCS)4L2] (R = methyl, ethyl, n-butyl, benzyl; L = pyridine, γ-picoline). In total, sixteen new Reineckate related salts with large imidazolium cations are described. Out of these, five compounds were crystallized, and their structures determined by single-crystal X-ray structure analyses. They all consisted of discrete anions and cations with octahedrally coordinated Cr(III) ions. In the structures, various hydrogen contacts interconnect the entities to build up hydrogen bonded networks. Thermal investigations showed relatively low melting points for the homoleptic complexes. The compounds with the [Cr(NCS)6]3− anion melt without decomposition and are stable up to 200 K above their melting points. The complex salts with the [Cr(NCS)4L2]− anion, in contrast, start to decompose and lose L molecules (Pyr or Pic) already at the melting point.
  • Item
    Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites
    (Melville, NY : AIP, 2017) Socher, Robert; Krause, Beate; Pötschke, Petra
    The aim of this study was to decrease the electrical percolation threshold of multiwalled carbon nanotubes (MWCNTs) in a polyamide 12 matrix by the use of additives. Different kinds of additives were selected which either interact with the π-system of the MWCNTs (imidazolium based ionic liquid (IL) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)) or improve the MWCNT wettability (cyclic butylene terephthalate, CBT). The composites were melt mixed using a DACA microcompounder. The electrical percolation threshold for PA12/MWCNT without additives, measured on compression molded plates, was found between 2.0 and 2.25 wt%. With all used additives, a significant reduction of the electrical percolation threshold could be achieved. Whereas the addition of IL and CBT resulted in MWCNT percolation at around 1.0 wt%, a slightly higher percolation threshold between 1.0 and 1.5 wt% was found for PTCDA as an additive. Interestingly, the electrical resistivity at higher loadings was decreased by nearly two decades when using CBT and one decade after application of PTCDA, whereas IL did not contribute to lower values in this range. In all cases macrodispersion as assessed by light microscopy was not improved and even worse as compared to non-modified composites. In summary, the results illustrate that these kinds of additives are able to improve the performance of PA12 based MWCNT nanocomposites.
  • Item
    Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy
    (Bristol : IOP, 2012) Roth, C.; Chatzipapadopoulos, S.; Kerlé, D.; Friedriszik, F.; Lütgens, M.; Lochbrunner, S.; Kühn, O.; Ludwig, R.
    Three imidazolium-based ionic liquids of the type [Cnmim] [NTf2] with different alkyl chain lengths (n = 1, 2 and 8) at the first position of the imidazolium ring were studied applying infrared, linear Raman and multiplex coherent anti-Stokes Raman scattering spectroscopy. The focus has been on the CH-stretching region of the imidazolium ring, which is supposed to carry information about a possible hydrogen bonding network in the ionic liquid. The measurements are compared with calculations of the corresponding anharmonic vibrational spectra for a cluster of [C 2mim][NTf2] consisting of four ion pairs. The results support the hypothesis of weak hydrogen bonding involving the C(4)-H and C(5)-H groups and somewhat stronger hydrogen bonds of the C(2)-H groups.
  • Item
    Effect of cation size of binary cation ionic liquid mixtures on capacitive energy storage
    (New York, NY [u.a.] : Elsevier, 2023) Seltmann, Anna; Verkholyak, Taras; Gołowicz, Dariusz; Pameté, Emmanuel; Kuzmak, Andrij; Presser, Volker; Kondrat, Svyatoslav
    Ionic liquid mixtures show promise as electrolytes for supercapacitors with nanoporous electrodes. Herein, we investigate theoretically and with experiments how binary electrolytes comprising a common anion and two types of differently-sized cations affect capacitive energy storage. We find that such electrolytes can enhance the capacitance of single nanopores and nanoporous electrodes under potential differences negative relative to the potential of zero charge. For a two-electrode cell, however, they are beneficial only at low and intermediate cell voltages, while a neat ionic liquid performs better at higher voltages. We reveal subtle effects of how the distribution of pores accessible to different types of ions correlates with charge storage and suggest approaches to increase capacitance and stored energy density with ionic liquid mixtures.
  • Item
    Multi-walled carbon nanotube-based composite materials as catalyst support for water–gas shift and hydroformylation reactions
    (London : RSC Publishing, 2019) Wolf, Patrick; Logemann, Morten; Schörner, Markus; Keller, Laura; Haumann, Marco; Wessling, Matthias
    In times of depleting fossil fuel reserves, optimizing industrial catalytic reactions has become increasingly important. One possibility for optimization is the use of homogenous catalysts, which are advantageous over heterogeneous catalysts because of mild reaction conditions as well as higher selectivity and activity. A new emerging technology, supported ionic liquid phase (SILP), was developed to permanently immobilize homogeneous catalyst complexes for continuous processes. However, these SILP catalysts are unable to form freestanding supports by themselves. This study presents a new method to introduce the SILP system into a support made from multi-walled carbon nanotubes (MWCNT). In a first step, SILP catalysts were prepared for hydroformylation as well as low-temperature water–gas shift (WGS) reactions. These catalysts were integrated into freestanding microtubes formed from MWCNTs, with silica (for hydroformylation) or alumina particles (for WGS) incorporated. In hydroformylation, the activity increased significantly by around 400% when the pure MWCNT material was used as SILP support. An opposite trend was observed for WGS, where pure alumina particles exhibited the highest activity. A significant advantage of the MWCNT composite materials is the possibility to coat them with separation layers, which allows their application in membrane reactors for more efficient processes.
  • Item
    Ether functionalisation, ion conformation and the optimisation of macroscopic properties in ionic liquids
    (Cambridge : RSC Publ., 2020) Philippi, Frederik; Rauber, Daniel; Kuttich, Björn; Kraus, Tobias; Kay, Christopher W.M.; Hempelmann, Rolf; Hunt, Patricia A.; Welton, Tom
    Ionic liquids are an attractive material class due to their wide liquid range, intrinsic ionic conductivity, and high chemical as well as electrochemical stability. However, the widespread use of ionic liquids is hindered by significantly higher viscosities compared to conventional molecular solvents. In this work, we show how the transport properties of ionic liquids can be altered significantly, even for isostructural ions that have the same backbone. To this end, structure–property relationships have been determined for a set of 16 systematically varied representative ionic liquids. Variations in molecular structure include ammonium vs. phosphonium, ether vs. alkyl side chains, and rigid vs. flexible anions. Ab initio calculations are used to relate molecular structures to the thermal, structural and transport properties of the ionic liquids. We find that the differences in properties of ether and alkyl functionalised ionic liquids are primarily dependent on minimum energy geometries, with the conformational flexibility of ether side chains appearing to be of secondary importance. We also show unprecedented correlations between anion conformational flexibility and transport properties. Critically, increasing fluidity upon consecutive introduction of ether side chains and phosphonium centres into the cation is found to be dependent on whether the anion is flexible or rigid. We demonstrate that targeted design of functional groups based on structure–property relationships can yield ionic liquids of exceptionally high fluidity.
  • Item
    Polymer - Carbon nanotube composites for thermoelectric applications
    (Melville, NY : AIP, 2017) Luo, J.; Krause, Beate; Pötschke, Petra
    The thermoelectric (TE) performance of electrically conductive thermoplastic composites prepared by melt mixing was investigated. A cost effective widely used in industry polymer, namely polypropylene (PP), was chosen as the matrix to fabricate the composites. Singlewalled carbon nanotubes (SWCNTs), the amount (2 wt%) of which was selected to be above the electrical percolation threshold (< 0.2 wt%), were used to form an electrical conducting network. Besides as-produced SWCNTs plasma modified tubes were employed to study the influence of the functionalization on the morphology, dispersion and TE properties of the PP composites. In addition, melt processing conditions, e.g. temperature, rotation speed, and time during mixing in a small-scale compounder were varied. Furthermore, an ionic liquid (IL, 1-methyl-3-octylimidazolium tetrafluoroborate) was used as a processing additive during melt mixing, which was confirmed to improve the electrical conductivity of the composites. Simultaneous increase in the Seebeck coefficient up to a value of 64 μV/K was recorded, leading to a much better power factor of 0.26 μW/(m·K2) compared to composites without IL. This melt mixing strategy opens new avenues for solvent-free, large scale fabrication of polymer based TE materials.