Search Results

Now showing 1 - 9 of 9
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    General Time-Dependent Configuration-Interaction Singles I: The Molecular Case
    (Woodbury, NY : Inst., 2022-10-10) Carlström, Stefanos; Spanner, Michael; Patchkovskii, Serguei
    We present a grid-based implementation of the time-dependent configuration-interaction singles method suitable for computing the strong-field ionization of small gas-phase molecules. After outlining the general equations of motion used in our treatment of this method, we present example calculations of strong-field ionization of He, LiH, H2O, and C2H4 that demonstrate the utility of our implementation. The following paper [S. Carlström et al., following paper, Phys. Rev. A 106, 042806 (2022)] specializes to the case of spherical symmetry, which is applied to various atoms.
  • Item
    Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity
    (Austin, Tex. : Landes Bioscience, 2021) Faramarzi, Fatemeh; Zafari, Parisa; Alimohammadi, Mina; Moonesi, Mohammadreza; Rafiei, Alireza; Bekeschus, Sander
    Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
  • Item
    H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine
    (Austin, Tex. : Landes Bioscience, 2021) Schütz, Clarissa S.; Stope, Matthias B.; Bekeschus, Sander
    At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
  • Item
    Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields
    (College Park, MD : Institute of Physics Publishing, 2008) Kling, M.F.; Rauschenberger, J.; Verhoef, A.J.; Hasović, E.; Uphues, T.; Milošević, D.B.; Muller, H.G.; Vrakking, M.J.J.
    Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust
    (Bristol : IOP Publ., 2016) Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana
    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M⊙ stars with the Z = 0.008.
  • Item
    Atomic processes in bicircular fields
    (Bristol : IOP Publ., 2016) Odžak, S.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate laser-assisted electron-ion recombination (LAR), high-order harmonic generation (HHG) and above-threshold ionization (ATI) of argon atoms by a bicircular laser field, which consists of two coplanar counter-rotating circularly polarized fields of frequencies rω and sω. The energy of soft x rays generated in the LAR process is analyzed as a function of the incident electron angle and numerical results of direct recombination of electrons with Ar+ ions are presented. We also present the results of HHG by a bicircular field and confirm the selection rules derived earlier for inert-gas atoms in a p ground state. We show that the photoelectron spectra in the ATI process, presented in the momentum plane, as well as the LAR spectra exhibit the same discrete rotational symmetry as the applied field.
  • Item
    Cross-polarized common-path temporal interferometry for high-sensitivity strong-field ionization measurements
    (Washington, DC : Soc., 2022) Nie, Zan; Nambu, Noa; Marsh, Kenneth A.; Welch, Eric; Matteo, Daniel; Zhang, Chaojie; Wu, Yipeng; Patchkovskii, Serguei; Morales, Felipe; Smirnova, Olga; Joshi, Chan
    Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013 cm-2 if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent'ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.
  • Item
    Biofunctionalized zinc peroxide (ZnO2) nanoparticles as active oxygen sources and antibacterial agents
    (London : RSC Publishing, 2017) Bergs, Christian; Brück, Lisa; Rosencrantz, Ruben R.; Conrads, Georg; Elling, Lothar; Pich, Andrij
    Oxygen is one of the most important substances for physiological reactions and metabolisms in biological systems. Through the tailored design of oxygen-releasing materials it might be possible to control different biological processes. In this work we synthesized for the first time zinc peroxide nanoparticles with controlled sizes and biofunctionalized surfaces using a one-step reaction procedure. The zinc peroxide nanoparticles were obtained with tunable sizes (between 4.0 ± 1.2 nm and 9.4 ± 5.2 nm) and were decorated with glucose 1-phosphate (Glc-1P). The specific interaction of the phosphate function of Glc-1P with the nanoparticle surface was monitored by solid state 31P-NMR and zeta-potential measurements. Furthermore, using fluorescence measurements we demonstrated that anchored glucose molecules on the nanoparticle surface are accessible for specific interactions with lectins. It could be shown that these interactions strongly depend on the amount of Glc-1P attached to the nanoparticle surface. Additionally it was demonstrated that the oxygen release from biofunctionalized zinc peroxide nanoparticles could be tuned according to the chemical composition of the nanoparticles and the pH of the aqueous solution. The antibacterial efficiency of the synthesized nanoparticles against Enterococcus faecalis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia was evaluated by determination of minimal bactericidal concentration (MIC).