Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Solar and lunar daily geomagnetic variations and their equivalent current systems observed by Swarm

2022, Yamazaki, Yosuke

This paper describes solar and lunar daily variations of the geomagnetic field over low- and mid-latitude regions, using vector magnetometer data from Swarm satellites at altitudes of ∼500 km during the solar minimum years of 2017–2020. The average solar variation of the geomagnetic field is within the range of ±14 nT, while the lunar variation is within ±2 nT. The latter is comparable to the ocean tidal field. A spherical harmonic analysis is performed on the solar and lunar variations to evaluate their internal and external equivalent current systems. The results show that both the solar and lunar variations are mainly of internal origin, which can be attributed to combined effects of ionospheric dynamo currents and induced underground currents. Global patterns of the internal solar and lunar current systems are consistent with the corresponding external current systems previously reported based on ground observations. The Swarm external currents are mainly in the meridional direction, and are likely associated with interhemispheric field-aligned currents. Both the internal and external current systems depend on the season and longitude.

Loading...
Thumbnail Image
Item

Geomagnetic data from the GOCE satellite mission

2022, Michaelis, I., Styp-Rekowski, K., Rauberg, J., Stolle, C., Korte, M.

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is part of ESA’s Earth Explorer Program. The satellite carries magnetometers that control the activity of magnetorquers for navigation of the satellite, but are not dedicated as science instruments. However, intrinsic steady states of the instruments can be corrected by alignment and calibration, and artificial perturbations, e.g. from currents, can be removed by their characterisation correlated to housekeeping data. The leftover field then shows the natural evolution and variability of the Earth’s magnetic field. This article describes the pre-processing of input data as well as calibration and characterisation steps performed on GOCE magnetic data, using a high-precision magnetic field model as reference. For geomagnetic quiet times, the standard deviation of the residual is below 13 nT with a median residual of (11.7, 9.6, 10.4) nT for the three magnetic field components (x, y, z). For validation of the calibration and characterisation performance, we selected a geomagnetic storm event in March 2013. GOCE magnetic field data show good agreement with results from a ground magnetic observation network. The GOCE mission overlaps with the dedicated magnetic field satellite mission CHAMP for a short time at the beginning of 2010, but does not overlap with the Swarm mission or any other mission flying at low altitude and carrying high-precision magnetometers. We expect calibrated GOCE magnetic field data to be useful for lithospheric modelling and filling the gap between the dedicated geomagnetic missions CHAMP and Swarm. Graphic Abstract: [Figure not available: see fulltext.].