Search Results

Now showing 1 - 3 of 3
  • Item
    A chemical reaction controlled by light-activated molecular switches based on heterocyclopentanediyls
    (Cambridge : RSC, 2019) Bresien, Jonas; Kröger-Badge, Thomas; Lochbrunner, Stefan; Michalik, Dirk; Müller, Henrik; Schulz, Axel; Zander, Edgar
    Molecular switches are molecules that can reversibly be shifted between at least two stable states with different physical and chemical properties, making them interesting for application as chemical sensors or molecular machines. We recently discovered that five-membered, cyclic biradicals based on group 15 elements are efficient and robust photochemical switches that can be activated by red light. The quantum yield of the photo-isomerization is as high as 24.6%, and the thermal equilibration of the photo-activation product proceeds rapidly at ambient temperature. The fully reversible process was studied by experimental and high-level ab initio techniques. We could further demonstrate that the biradical character could be completely turned on and off, so the system could be applied to control chemical equilibria that involve activation products of the cyclic biradicals. © 2019 The Royal Society of Chemistry.
  • Item
    Photoswitching of DNA Hybridization Using a Molecular Motor
    (Washington, DC : ACS Publications, 2018) Lubbe, Anouk S.; Liu, Qing; Smith, Sanne J.; de Vries, Jan Willem; Kistemaker, Jos C. M.; de Vries, Alex H.; Faustino, Ignacio; Meng, Zhuojun; Szymanski, Wiktor; Herrmann, Andreas; Feringa, Ben L.
    Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics, and nucleic acids, has generated exciting results in the past few years. Molecular motors offer the potential for new and more precise methods of photoregulation, due to their multistate switching cycle, unidirectionality of rotation, and helicity inversion during the rotational steps. Aided by computational studies, we designed and synthesized a photoswitchable DNA hairpin, in which a molecular motor serves as the bridgehead unit. After it was determined that motor function was not affected by the rigid arms of the linker, solid-phase synthesis was employed to incorporate the motor into an 8-base-pair self-complementary DNA strand. With the photoswitchable bridgehead in place, hairpin formation was unimpaired, while the motor part of this advanced biohybrid system retains excellent photochemical properties. Rotation of the motor generates large changes in structure, and as a consequence the duplex stability of the oligonucleotide could be regulated by UV light irradiation. Additionally, Molecular Dynamics computations were employed to rationalize the observed behavior of the motor–DNA hybrid. The results presented herein establish molecular motors as powerful multistate switches for application in biological environments.
  • Item
    Solvent effects on catalytic activity and selectivity in amine-catalyzed D-fructose isomerization
    (Amsterdam [u.a.] : Elsevier, 2022) Drabo, Peter; Fischer, Matthias; Emondts, Meike; Hamm, Jegor; Engelke, Mats; Simonis, Marc; Qi, Long; Scott, Susannah L.; Palkovits, Regina; Delidovich, Irina
    Rational catalyst design and optimal solvent selection are key to advancing biorefining. Here, we explored the organocatalytic isomerization of D-fructose to a valuable rare monosaccharide, D-allulose, as a function of solvent. The isomerization of D-fructose to D-allulose competes with its isomerization to D-glucose and sugar degradation. In both water and DMF, the catalytic activity of amines towards D-fructose is correlated with their basicity. Solvents impact the selectivity significantly by altering the tautomeric distribution of D-fructose. Our results suggest that the furanose tautomer of D-fructose is isomerized to D-allulose, and the fractional abundance of this tautomer increases as follows: water < MeOH < DMF ≈ DMSO. Reaction rates are also higher in aprotic than in protic solvents. The best D-allulose yield, 14 %, was obtained in DMF with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst. The reaction kinetics and mechanism were explored using operando NMR spectroscopy.