Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

2006, Nielsen, K., Taylor, M.J., Pautet, P.-D., Fritts, D.C., Mitchell, N., Beldon, C., Williams, B.P., Singer, W., Schmidlin, F.J., Goldberg, R.A.

As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically) winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km) using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted). Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

Loading...
Thumbnail Image
Item

Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign

2009, Strelnikov, B., Rapp, M., Strelnikova, I., Engler, N., Latteck, R.

We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability. We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008) and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009).