Search Results

Now showing 1 - 2 of 2
  • Item
    Molecular dynamics investigated by temporally two-dimensional coherent Raman spectroscopy
    (Routledge : Taylor and Francis Inc., 1999) Lau, A.; Pfeiffer, M.; Kozich, V.; Kummrow, A.
    A six-wave set-up is described to determine molecular dynamics in the condensed phase. Applying two independent time delays between excitation and probe pulses additional information on the dynamics should be obtainable. We show experimentally that such investigations can be carried out with noisy light having intensity fluctuations in the femtosecond region. As first result we found a fast relaxation time in neat nitrobenzene of 100 fs, becoming even faster in mixtures with low viscosity liquids. Switching on a Raman resonance yields a longer relaxation time, which could be explained by an additional contribution by that vibration.
  • Item
    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts
    (Bristol : IOP Publishing, 2021) Steglich, Patrick; Mai, Christian; Villringer, Claus; Dietzel, Birgit; Bondarenko, Siegfried; Ksianzou, Viachaslau; Villasmunta, Francesco; Zesch, Christoph; Pulwer, Silvio; Burger, Martin; Bauer, Joachim; Heinrich, Friedhelm; Schrader, Sigurd; Vitale, Francesco; De Matteis, Fabio; Prosposito, Paolo; Casalboni, Mauro; Mai, Andreas
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given.