Search Results

Now showing 1 - 9 of 9
  • Item
    A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust
    (Bristol : IOP Publ., 2016) Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana
    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M⊙ stars with the Z = 0.008.
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    Correlated electronic decay following intense near-infrared ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.
  • Item
    Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets
    (Bristol : IOP Publ., 2015) Hasović, Elvedin; Milošević, Dejan B.; Gazibegović-Busuladži, Azra; Čerkić, Aner; Busuladžić, Mustafa
    We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.
  • Item
    Strong field ionization of small hydrocarbon chains with full 3D momentum analysis
    (Bristol : IOP Publ., 2015) Schulz, Claus Peter; Birkner, Sascha; Furch, Federico J.; Anderson, Alexandria; Mikosch, Jochen; Schell, Felix; Vrakking, Marc J. J.
    Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.
  • Item
    Intracycle interference in ionization of Ar by a laser assisted XUV pulse
    (Bristol : IOP Publ., 2017) Arbó, D.G.; López, S. D.; Kubin, M.; Hummert, J.; Vrakking, M.J.J.; Kornilov, O.
    Synopsis We present a theoretical and experimental study of the subcycle interference in laser assisted XUV ionization of Ar atoms. Averaging over the focal volume happens to blur the intracycle interference, which thus cannot be measured directly. We show that even at these conditions, the intracycle interference can be obtained through the subtraction of two different angle and energy-resolved distributions at slightly different laser intensities.
  • Item
    Intracluster Coulombic decay following intense NIR ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay.
  • Item
    Unified description of low-order above-threshold ionization on and off axis
    (Bristol : IOP Publ., 2016) Becker, W.; Milošević, D.B.
    A recently developed unified description of low-order above-threshold ionization (Becker et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204022; 2015 J. Phys. B: At. Mol. Opt. Phys. 48 151001) is revisited and extended. By considering the rescattering electron energies and angles at the classical cutoffs and the contributions of particular quantum-orbit solutions, it is shown that summing both the backward- and the forward-scattering contributions, within the low-frequency approximation, it is possible to reproduce the observed features of the ATI spectra both for low and high energies and both on and off the laser-polarization axis in the momentum plane.
  • Item
    Above-threshold ionization in a bicircular field: Quantum orbits unfolding in a plane
    (Bristol : IOP Publ., 2017) Becker, W.; Milošević, D.B.
    Above-threshold ionization (ATI) of atoms by a strong bicircular laser field is investigated using the strong-field approximation and the quantum-orbit theory. The bicircular field consists of two coplanar counterrotating circularly polarized fields with a frequency ratio of 2:1. The velocity map of the angle-resolved ATI spectra, both for direct and rescattered electrons, reflects the shape of a parametric plot of the bicircular field and its symmetries. It is shown that the main characteristics of the ATI spectra can be explained using only a few quantum orbits having short travel times. We also analyze a recently discovered [Phys. Rev. A 93, 052402(R) (2016)] bicircular-field-induced spin asymmetry of the ATI electrons and show that the momentum dependence of the spin-asymmetry parameter is stronger for longer wavelengths.