Search Results

Now showing 1 - 10 of 89
  • Item
    A Review on Recent Advances in Video-based Learning Research: Video Features, Interaction, Tools, and Technologies
    (Aachen, Germany : RWTH Aachen, 2021) Navarrete, Evelyn; Hoppe, Anett; Ewerth, Ralph; Cong, Gao; Ramanath, Maya
    Human learning shifts stronger than ever towards online settings, and especially towards video platforms. There is an abundance of tutorials and lectures covering diverse topics, from fixing a bike to particle physics. While it is advantageous that learning resources are freely available on the Web, the quality of the resources varies a lot. Given the number of available videos, users need algorithmic support in finding helpful and entertaining learning resources. In this paper, we present a review of the recent research literature (2020-2021) on video-based learning. We focus on publications that examine the characteristics of video content, analyze frequently used features and technologies, and, finally, derive conclusions on trends and possible future research directions.
  • Item
    A Case for Integrated Data Processing in Large-Scale Cyber-Physical Systems
    (Maui, Hawaii : HICSS, 2019) Glebke, René; Henze, Martin; Wehrle, Klaus; Niemietz, Philipp; Trauth, Daniel; Mattfeld, Patrick; Bergs, Thomas; Bui, Tung X.
    Large-scale cyber-physical systems such as manufacturing lines generate vast amounts of data to guarantee precise control of their machinery. Visions such as the Industrial Internet of Things aim at making this data available also to computation systems outside the lines to increase productivity and product quality. However, rising amounts and complexities of data and control decisions push existing infrastructure for data transmission, storage, and processing to its limits. In this paper, we exemplarily study a fine blanking line which can produce up to 6.2 Gbit/s worth of data to showcase the extreme requirements found in modern manufacturing. We consequently propose integrated data processing which keeps inherently local and small-scale tasks close to the processes while at the same time centralizing tasks relying on more complex decision procedures and remote data sources. Our approach thus allows for both maintaining control of field-level processes and leveraging the benefits of “big data” applications.
  • Item
    Formalizing Gremlin pattern matching traversals in an integrated graph Algebra
    (Aachen, Germany : RWTH Aachen, 2019) Thakkar, Harsh; Auer, Sören; Vidal, Maria-Esther; Samavi, Reza; Consens, Mariano P.; Khatchadourian, Shahan; Nguyen, Vinh; Sheth, Amit; Giménez-García, José M.; Thakkar, Harsh
    Graph data management (also called NoSQL) has revealed beneficial characteristics in terms of flexibility and scalability by differ-ently balancing between query expressivity and schema flexibility. This peculiar advantage has resulted into an unforeseen race of developing new task-specific graph systems, query languages and data models, such as property graphs, key-value, wide column, resource description framework (RDF), etc. Present-day graph query languages are focused towards flex-ible graph pattern matching (aka sub-graph matching), whereas graph computing frameworks aim towards providing fast parallel (distributed) execution of instructions. The consequence of this rapid growth in the variety of graph-based data management systems has resulted in a lack of standardization. Gremlin, a graph traversal language, and machine provide a common platform for supporting any graph computing sys-tem (such as an OLTP graph database or OLAP graph processors). In this extended report, we present a formalization of graph pattern match-ing for Gremlin queries. We also study, discuss and consolidate various existing graph algebra operators into an integrated graph algebra.
  • Item
    Fingertip friction and tactile rating of wrapping papers
    (Berlin ; Heidelberg : Springer, 2022) Jost, Kim Michèle; Drewing, Knut; Bennewitz, Roland; Seifi, Hasti; Kappers, Astrid M. L.; Schneider, Oliver; Drewing, Knut; Pacchierotti, Claudio; Abbasimoshaei, Alireza; Huisman, Gijs; Kern, Thorsten A.
    The tactile exploration and perception of wrapping papers is investigated in terms of fingertip friction and rating of sensory, affective, and evaluative adjectives. Friction coefficients, which vary significantly between samples, are correlated with factors such as valence which are identified in a principal component analysis of subjective ratings. We found that affective appraisals of valence and arousal as well as evaluations of novelty, but not of value, decreased with increasing friction.
  • Item
    On the Role of Images for Analyzing Claims in Social Media
    (Aachen, Germany : RWTH Aachen, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, Ralph
    Fake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
  • Item
    Understanding Class Representations: An Intrinsic Evaluation of Zero-Shot Text Classification
    (Aachen, Germany : RWTH Aachen, 2021) Hoppe, Fabian; Dessì, Danilo; Sack, Harald; Alam, Mehwish; Buscaldi, Davide; Cochez, Michael; Osborne, Francesco; Reforgiato Recupero, Diego; Sack, Harald
    Frequently, Text Classification is limited by insufficient training data. This problem is addressed by Zero-Shot Classification through the inclusion of external class definitions and then exploiting the relations between classes seen during training and unseen classes (Zero-shot). However, it requires a class embedding space capable of accurately representing the semantic relatedness between classes. This work defines an intrinsic evaluation based on greater-than constraints to provide a better understanding of this relatedness. The results imply that textual embeddings are able to capture more semantics than Knowledge Graph embeddings, but combining both modalities yields the best performance.
  • Item
    Steps towards a Dislocation Ontology for Crystalline Materials
    (Aachen, Germany : RWTH Aachen, 2021) Ihsan, Ahmad Zainul; Dessì, Danilo; Alam, Mehwish; Sack, Harald; Sandfeld, Stefan; García-Castro, Raúl; Davies, John; Antoniou, Grigoris; Fortuna, Carolina
    The field of Materials Science is concerned with, e.g., properties and performance of materials. An important class of materials are crystalline materials that usually contain “dislocations" - a line-like defect type. Dislocation decisively determine many important materials properties. Over the past decades, significant effort was put into understanding dislocation behavior across different length scales both with experimental characterization techniques as well as with simulations. However, for describing such dislocation structures there is still a lack of a common standard to represent and to connect dislocation domain knowledge across different but related communities. An ontology offers a common foundation to enable knowledge representation and data interoperability, which are important components to establish a “digital twin". This paper outlines the first steps towards the design of an ontology in the dislocation domain and shows a connection with the already existing ontologies in the materials science and engineering domain.
  • Item
    Machine Learning with Symbolic Methods and Knowledge Graphs
    (Aachen : RWTH Aachen, 2021) Alam, Mehwish; Ali, Mehdi; Groth, Paul; Hitzler, Pascal; Lehmann, Jens; Paulheim, Heiko; Rettinger, Achim; Sack, Harald; Sadeghi, Afshi; Tresp, Volker
    [no abstract available]
  • Item
    Falcon 2.0: An Entity and Relation Linking Tool over Wikidata
    (New York City, NY : Association for Computing Machinery, 2020) Sakor, Ahmad; Singh, Kuldeep; Patel, Anery; Vidal, Maria-Esther
    The Natural Language Processing (NLP) community has significantly contributed to the solutions for entity and relation recognition from a natural language text, and possibly linking them to proper matches in Knowledge Graphs (KGs). Considering Wikidata as the background KG, there are still limited tools to link knowledge within the text to Wikidata. In this paper, we present Falcon 2.0, the first joint entity and relation linking tool over Wikidata. It receives a short natural language text in the English language and outputs a ranked list of entities and relations annotated with the proper candidates in Wikidata. The candidates are represented by their Internationalized Resource Identifier (IRI) in Wikidata. Falcon 2.0 resorts to the English language model for the recognition task (e.g., N-Gram tiling and N-Gram splitting), and then an optimization approach for the linking task. We have empirically studied the performance of Falcon 2.0 on Wikidata and concluded that it outperforms all the existing baselines. Falcon 2.0 is open source and can be reused by the community; all the required instructions of Falcon 2.0 are well-documented at our GitHub repository (https://github.com/SDM-TIB/falcon2.0). We also demonstrate an online API, which can be run without any technical expertise. Falcon 2.0 and its background knowledge bases are available as resources at https://labs.tib.eu/falcon/falcon2/.
  • Item
    Check square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
    (Aachen, Germany : RWTH Aachen, 2020) Cheema, Gullasl S.; Hakimov, Sherzod; Ewerth, Ralph; Cappellato, Linda; Eickhoff, Carsten; Ferro, Nicola; Névéol, Aurélie
    In this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first prob-lem, claim check-worthiness prediction, we explore the fusion of syntac-tic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similar-ity, and perform KD-search to retrieve verified claims with respect to a query tweet.