Search Results

Now showing 1 - 10 of 16
  • Item
    Preparation of clay mineral samples for high resolution x-ray imaging
    (Bristol : Institute of Physics Publishing, 2013) Abbati, G.; Seim, C.; Legall, H.; Stiel, H.; Thomas, N.; Wilhein, T.
    In the development of optimum ceramic materials for plastic forming, it is of fundamental importance to gain insight into the compositions of the clay minerals. Whereas spectroscopic methods are adequate for determining the elemental composition of a given sample, a knowledge of the spatial composition, together with the shape and size of the particles leads to further, valuable insight. This requires an imaging technique such as high resolution X-ray microscopy. In addition, fluorescence spectroscopy provides a viable element mapping technique. Since the fine particle fraction of the materials has a major effect on physical properties like plasticity, the analysis is focused mainly on the smallest particles. To separate these from the bigger agglomerates, the raw material has to pass through several procedures like centrifugation and filtering. After that, one has to deposit a layer of appropriate thickness on to a suitable substrate. These preparative techniques are described here, starting from the clay mineral raw materials and proceeding through to samples that are ready to analyze. First results using high resolution x-ray imaging are shown.
  • Item
    Characterization of L21 order in Co2FeSi thin films on GaAs
    (Bristol : Institute of Physics Publishing, 2013) Jenichen, B.; Hentschel, T.; Herfort, J.; Kong, X.; Trampert, A.; Zizak, I.
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(-1-1-1)B hybrid structures were grown by molecular-beam epitaxy (MBE) and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The films contain inhomogeneous distributions of ordered L21 and B2 phases. The average stoichiometry could be determined by XRD for calibration of the MBE sources. Diffusion processes lead to inhomogeneities, influencing long-range order. An average L21 ordering of up to 65% was measured by grazing-incidence XRD. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were imaged using dark-field TEM with superlattice reflections and shown to correspond to variations of the Co/Fe ratio.
  • Item
    Cryogenic time-domain multiplexer based on SQUID arrays and superconducting/normal conducting switches
    (Bristol : Institute of Physics Publishing, 2014) Beev, N.; Kiviranta, M.; Van Der Kuur, J.; Bruijn, M.; Brandel, O.; Linzen, S.; Fritzsch, L.; Ahoranta, J.; Penttilä, J.; Roschier, L.
    We have demonstrated the operation of a 12-channel Beyer-style SQUID-based time domain multiplexer. It was manufactured using a fabrication process that is cross-compatible between VTT and IPHT-Jena. The multiplexer consists of twelve 12-SQUID series arrays, each shunted by a Zappe-style interferometer array acting as a flux-controlled superconducting/normal conducting switch. By keeping all switches but one in the superconducting state, it is possible to select one active readout channel at a time. A flux feedback coil common to all SQUID arrays allows realization of a flux-locked loop. We present characteristics of the multiplexer and measurement data from experiments with a 25-pixel X-ray calorimeter array operated at T < 100 mK in a dilution refrigerator.
  • Item
    Incorporation of nitrogen into TiO2 thin films during PVD processes
    (Bristol : Institute of Physics Publishing, 2014) Asenova, I.; Manova, D.; Mändl, S.
    In this paper we investigate the possibility of incorporating nitrogen into amorphous, photocatalytic TiO2 thin films, prepared at room temperature, during the growth process. The aim is to reduce the bandgap of the UV active thin films. Physical vapor deposition experiments employing a titanium vacuum arc with gas backfill ranging from pure oxygen to pure nitrogen, are carried out. The resulting films are characterized for chemical composition, phase composition, optical properties and hydrophilicity in order to determine a correlation between gas composition and thin film properties. The experimental results point that a visible change in the band structure of the deposited layers is achieved.
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    A compact laboratory transmission X-ray microscope for the water window
    (Bristol : Institute of Physics Publishing, 2013) Legall, H.; Stiel, H.; Blobel, G.; Seim, C.; Baumann, J.; Yulin, S.; Esser, D.; Hoefer, M.; Wiesemann, U.; Wirtz, M.; Schneider, G.; Rehbein, S.; Hertz, H.M.
    In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.
  • Item
    Setup of an 8 keV laboratory transmission x-ray microscope
    (Bristol : Institute of Physics Publishing, 2014) Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Bjeoumikhova, S.; Wilhein, T.
    This article presents a concept and the first results for the setup of an 8keV laboratory transmission x-ray microscope with a polycapillary optic as condenser at the BliX in Berlin. The incentive of building such a microscope is that the penetration depth for hard x-rays is much higher than in the soft x-ray range, e.g. The water window. Therefore, it is possible to investigate even dense materials such as metal compounds, bones or geological samples. The future aim is to achieve a spatial resolution better than 200 nm.
  • Item
    Optical diagnostics of streamers: From laboratory micro-scale to upper-atmospheric large-scale discharges
    (Bristol : Institute of Physics Publishing, 2014) Simek, M.; Hoder, T.; Prukner, V.; Ambrico, P.F.
    Optical emission produced by streamers is determined by spatial distribution of electronically excited atomic and diatomic species within the streamer head and streamer channel. Peculiarities of emission and LIF diagnostics dedicated to investigating the basic structure of streamers with high spatio-temporal resolution are discussed. Possible strategies based on the 2D projections of cylindrically symmetric streamers to determine radial distributions of excited species within the streamer channel are illustrated for streamers produced in volume or on the dielectric surface at atmospheric and low pressures.
  • Item
    Single-electron transitions in one-dimensional native nanostructures
    (Bristol : Institute of Physics Publishing, 2014) Reiche, M.; Kittler, M.; Schmelz, M.; Stolz, R.; Pippel, E.; Uebensee, H.; Kermann, M.; Ortlepp, T.
    Low-temperature measurements proved the existence of a two-dimensional electron gas at defined dislocation arrays in silicon. As a consequence, single-electron transitions (Coulomb blockades) are observed. It is shown that the high strain at dislocation cores modifies the band structure and results in the formation of quantum wells along dislocation lines. This causes quantization of energy levels inducing the formation of Coulomb blockades.
  • Item
    Measuring conditions for second order X-ray Bragg-spectrometry
    (Bristol : Institute of Physics Publishing, 2014) Dellith, J.; Scheffel, A.; Wendt, M.
    The KL2,3 (α)1,2-lines of 19K, the L3M4,5 (α)1,2-lines of 48Cd, and the M5N6,7 (α)1,2-lines of 92U are lines of comparable energy in the region of approximately 3 keV. In none of these cases were we able to resolve the three doublets when recording the spectra in first order Bragg spectrometry using a PET crystal as the dispersing element. For the purpose of enhancing the resolving power of the spectrometer, the three α spectra were recorded in second order reflection, thereby transferring the lines into another spectral region dominated by X-ray quanta of half the energy. In order to achieve high net peak intensities as well as a high peak-to-background ratio and, consequently, a high level of detection capability, the discriminator settings should be optimized quite carefully. In this manner, we were able to resolve the three α doublets and estimate α2/α1 intensity ratios. Inexplicably, current monographs, e.g., by Goldstein et al, do not contain any indications about the rational use of high order spectrometry. Only a few rather old monographs contain some hints in this regard.