Search Results

Now showing 1 - 10 of 19
  • Item
    Bicrystalline grain boundary junctions of Co-doped and P-doped Ba-122 thin films
    (Milton Park : Taylor & Francis, 2014) Schmidt, S.; Döring, S.; Schmidl, F.; Kurth, F.; Iida, K.; Holzapfel, B.; Kawaguchi, T.; Mori, Y.; Ikuta, H.; Seidel, P.
    We prepared GB junctions of Ba(Fe0.9Co0.1)2As2 thin films on bicrystalline [00 l]-tilt SrTiO3 substrates. The junctions show clear Josephson effects. Electrical characterization shows asymmetric I-V characteristics which can be described within the resistively shunted junction (RSJ) model. A large excess current is observed. Their formal ICRN product is 20.2 μV at 4.2 K, which is decreased to 6.5 μV when taking Iex into account. Fabrication methods to increase this value are discussed. Additionally, measurements on GB junctions of BaFe2(As0.66P0.34)2 thin films on LSAT bicrystalline substrates are shown. Their symmetric RSJ/flux flow-behavior exhibits a formal ICRN product of 45 μV, whereas the excess corrected value is ll μV.
  • Item
    Combinatorial synthesis of (YxGd1-x)Ba2Cu3Ox superconducting thin films
    (Amsterdam [u.a.] : Elsevier, 2012) Kirchner, A.; Erbe, M.; Freudenberg, T.; Hühne, R.; Feys, J.; Van Driessche, I.; Schultz, L.; Holzapfel, B.
    Environmentally friendly water-based YBa2Cu3Ox (YBCO) and GdBa2Cu3Ox (GdBCO) precursor solutions were synthesized to realize thin films by chemical solution deposition. Pure YBCO and GdBCO precursor solutions were used for ink plotting on SrTiO3 substrates and subsequent thermal treatment at the corresponding crystallization temperature. Phase formation of Gd123 requires a higher crystallization temperature of 840 °C compared to the Y123 phase. The critical temperature of YBCO films is about 92 K with a sharp transition into the superconducting state. Micro liter sized ink volumes of YBCO and GdBCO were successfully mixed for two-dimensional ink plotting of a (YxGd1-x)Ba2Cu3Ox film library. A homogeneous surface and no indication of a-axis growth were found in all mixed films.
  • Item
    Pulsed-field Invasion to HTS Bulk Magnets Grown from Two Seeds with Varied Seed-crystal Positions and Numbers
    (Amsterdam [u.a.] : Elsevier, 2014) Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
    The flux-invasion behavior into the melt-processed Y-Ba-Cu-O bulk magnets were precisely measured and analyzed during and after their pulsed-field magnetization processes operated at 30.6 K. The materials were fabricated as the bulk monoliths grown by adopting two seed-crystals, or shifting the seed-crystal positions from the centre of the sample surface, which exhibited the magnetically single-domain distributions. Although the performances of the trapped flux density after activations showed no obvious differences, the flux started invading into the sample bearing two seeds obviously at lower fields than those of normally-grown isotropic crystal. Since the flux penetration behavior were thus clearly different between the samples with the structure grown from two seeds and uniformly grown samples with a seed crystal, it is suggested that the structure results in an effective magnetizing method with less heating than those of conventional samples, which results in the higher performance of field trapping in the bulk magnets than usual.
  • Item
    In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping
    (Amsterdam : Elsevier, 2017) Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich; Pantleon, Wolfgang
    A major failure reason for structural materials is fatigue-related damage due to repeatedly changing mechanical loads. During cyclic loading dislocations self-organize into characteristic ordered structures, which play a decisive role for the materials lifetime. These heterogeneous dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied successfully in-situ during cyclic deformation of macroscopic aluminium samples at the Advanced Photon Source to reveal the structural reorganization within single grains embedded in the bulk material during fatigue.
  • Item
    Origami-Inspired Shape Memory Folding Microactuator
    (Basel : MDPI, 2020) Seigner, Lena; Bezsmertna, Olha; Fähler, Sebastian; Tshikwand, Georgino; Wendler, Frank; Kohl, Manfred
    This paper presents the design, fabrication and performance of origami-based folding microactuators based on a cold-rolled NiTi foil of 20 µm thickness showing the one-way shape memory effect. Origami refers to a variety of techniques of transforming planar sheets into three-dimensional (3D) structures by folding, which has been introduced in science and engineering for, e.g., assembly and robotics. Here, NiTi microactuators are interconnected to rigid sections (tiles) forming an initial planar system that self-folds into a set of predetermined 3D shapes upon heating. While this concept has been demonstrated at the macro scale, we intend to transfer this concept into microtechnology by combining state-of-the art methods of micromachining. NiTi foils are micromachined by laser cutting or photolithography to achieve double-beam structures allowing for direct Joule heating with an electrical current. A thermo-mechanical treatment is used for shape setting of as-received specimens to reach a maximum folding angle of 180°. The bending moments, bending radii and load-dependent folding angles upon Joule heating are evaluated. The shape setting process is particularly effective for small bending radii, which, however generates residual plastic strain. After shape setting, unloaded beam structures show recoverable bending deflection between 0° and 140° for a maximum heating power of 900 mW. By introducing additional loads to account for the effect of the tiles, the smooth folding characteristic evolves into a sharp transition, whereby full deflection up to 180° is reached. The achieved results are an important step towards the development of cooperative multistable microactuator systems for 3D self-assembly.
  • Item
    Measurements of Streams Agitated by Fluid Loaded SAW-devices Using a Volumetric 3-component Measurement Technique (V3V)
    (Amsterdam [u.a.] : Elsevier, 2015) Kiebert, Florian; König, Jörg; Kykal, Carsten; Schmidt, Hagen
    Utilizing surface acoustic waves (SAW) to induce tailored fluid motion via the acoustic streaming requires detailed knowledge about the acoustic bulk wave excitation. For the first time, the Defocus Digital Particle Image Velocimetry is used to measure the fluid motion originating from a fluid loaded SAW-device. With this flow measurement technique, the acoustic streaming-induced fluid motion can be observed volumetrically, which is attractive not only for application, but also for simulation in order to gain deeper insights regarding three-dimensional acoustic effects.
  • Item
    Quasi-static and dynamic deformation behaviour of Zr-based bulk metallic glass
    (Milton Park : Taylor & Francis, 2013) Nekouie, V.; Kühn, U.; Roy, A.; Silberschmidt, V.
    Nano- and micro-indentation studies were carried out to characterise a plasticity mechanism through the evolution of localised shear bands that drive material's deformation at sub-micron length scale. Initial deformation of Zr-based bulk metallic glass (BMG) was investigated with nanoindentation tests using a spherical indenter. The indentation cycle reflects an elastic deformation with the yielding load of approx. 3 mN. For designed cycling indentation, hardening and softening phenomena were observed in nano- and micro-indentations, respectively. High-precision dynamic mechanical relaxation measurements were performed using a Dynamic Mechanical Analyzer (DMA), on decreasing frequency from 160 Hz to 0.1 Hz. A mechanical response of the BMG surface to a concentrated impact load was also studied. The obtained results indicated that the studied Zr-based BMG behaved as an elastic-perfectly plastic material at macroscale with discrete plasticity events at smaller length scales.
  • Item
    BaFe2As2/Fe bilayers with [001]-tilt grain boundary on MgO and SrTiO3 bicrystal substrates
    (Amsterdam [u.a.] : Elsevier, 2013) Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.
    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl 2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.
  • Item
    A superconducting levitation transport model system for dynamical and didactical studies
    (Amsterdam [u.a.] : Elsevier, 2012) Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.
    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Mini" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.
  • Item
    Investigation of the strain-sensitive superconducting transition of BaFe1.8Co0.2As2 thin films utilizing piezoelectric substrates
    (Milton Park : Taylor & Francis, 2014) Trommler, S.; Hänisch, J.; Iida, K.; Kurth, F.; Schultz, L.; Holzapfel, B.; Hühne, R.
    The preparation of biaxially textured BaFe1.8Co0.2As2 thin films has been optimized on MgO single crystals and transfered to piezoelectric (001) Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. By utilizing the inverse piezoelectric effect the lattice parameter of these substrates can be controlled applying an electric field, leading to a induction of biaxial strain into the superconducting layer. High electric fields were used to achieve a total strain of up to 0.05% at low temperatures. A sharpening of the resistive transition and a shift of about 0.6 K to higher temperatures was found at a compressive strain of 0.035%.