Search Results

Now showing 1 - 3 of 3
  • Item
    Cartesian product of synchronization transitions and hysteresis
    (Bristol : Institute of Physics Publishing, 2017) Wang, C.; Zou, Y.; Guan, S.; Kurths, J.
    We present theoretical results when applying the Cartesian product of two Kuramoto models on different network topologies. By a detailed mathematical analysis, we prove that the dynamics on the Cartesian product graph can be described by the canonical equations as the Kuramoto model. We show that the order parameter of the Cartesian product is the product of the order parameters of the factors. On the product graph, we observe either continuous or discontinuous synchronization transitions. In addition, under certain conditions, the transition from an initially incoherent state to a coherent one is discontinuous, while the transition from a coherent state to an incoherent one is continuous, presenting a mixture state of first and second order synchronization transitions. Our numerical results are in a good agreement with the theoretical predictions. These results provide new insight for network design and synchronization control.
  • Item
    Fully solvable lower dimensional dynamics of Cartesian product of Kuramoto models
    ([London] : IOP, 2019) Chen, Zewen; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Kurths, Jürgen
    Implementing a positive correlation between the natural frequencies of nodes and their connectivity on a single star graph leads to a pronounced explosive transition to synchronization, additionally presenting hysteresis behavior. From the viewpoint of network connectivity, a star has been considered as a building motif to generate a big graph by graph operations. On the other hand, we propose to construct complex synchronization dynamics by applying the Cartesian product of two Kuramoto models on two star networks. On the product model, the lower dimensional equations describing the ensemble dynamics in terms of collective order parameters are fully solved by the Watanabe-Strogatz method. Different graph parameter choices lead to three different interacting scenarios of the hysteresis areas of two individual factor graphs, which further change the basins of attraction of multiple fixed points. Furthermore, we obtain coupling regimes where cluster synchronization states are often present on the product graph and the number of clusters is fully controlled. More specifically, oscillators on one star graph are synchronized while those on the other star are not synchronized, which induces clustered state on the product model. The numerical results agree perfectly with the theoretic predictions. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Low-dimensional behavior of Kuramoto model with inertia in complex networks
    (London : Nature Publishing Group, 2014) Ji, P.; Peron, T.K.D.M.; Rodrigues, F.A.; Kurths, J.
    Low-dimensional behavior of large systems of globally coupled oscillators has been intensively investigated since the introduction of the Ott-Antonsen ansatz. In this report, we generalize the Ott-Antonsen ansatz to second-order Kuramoto models in complex networks. With an additional inertia term, we find a low-dimensional behavior similar to the first-order Kuramoto model, derive a self-consistent equation and seek the time-dependent derivation of the order parameter. Numerical simulations are also conducted to verify our analytical results.