Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations

2017, Dalimier, E., Ya Faenov, A., Oks, E., Angelo, P., Pikuz, T.A., Fukuda, Y., Andreev, A., Koga, J., Sakaki, H., Kotaki, H., Pirozhkov, A., Hayashi, Y., Skobelev, I.Yu., Pikuz, S.A., Kawachi, T., Kando, M., Kondo, K., Zhidkov, A., Tubman, E., Butler, N.M.H., Dance, R.J., Alkhimova, M.A., Booth, N., Green, J., Gregory, C., McKenna, P., Woolsey, N., Kodama, R.

We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.

Loading...
Thumbnail Image
Item

Adaptive micro axicons for laser applications

2015, Wallrabe, Ulrike, Brunne, Jens, Treffer, Alexander, Grunwald, Ruediger, Bellouard, Yves

We report on the design, fabrication and testing of novel types of low-dispersion axicons for the adaptive shaping of ultrashort laser pulses. An overview is given on the basic geometries and operating principles of our purely reflective adaptive MEMS-type devices based on thermal or piezoelectric actuation. The flexible formation of nondiffracting beams at pulse durations down to a few oscillations of the optical field enables new applications in optical communication, pulse diagnostics, laser-matter interaction and particle manipulation. As an example, we show first promising results of adaptive autocorrelation. The combination of excellent pulse transfer, self-reconstruction properties and propagation invariance of nondiffracting beams with an adaptive approach promises to extend the field of practical applications significantly.