Search Results

Now showing 1 - 8 of 8
  • Item
    X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations
    (Bristol : IOP Publ., 2017) Dalimier, E.; Ya Faenov, A.; Oks, E.; Angelo, P.; Pikuz, T.A.; Fukuda, Y.; Andreev, A.; Koga, J.; Sakaki, H.; Kotaki, H.; Pirozhkov, A.; Hayashi, Y.; Skobelev, I.Yu.; Pikuz, S.A.; Kawachi, T.; Kando, M.; Kondo, K.; Zhidkov, A.; Tubman, E.; Butler, N.M.H.; Dance, R.J.; Alkhimova, M.A.; Booth, N.; Green, J.; Gregory, C.; McKenna, P.; Woolsey, N.; Kodama, R.
    We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.
  • Item
    A compact laboratory transmission X-ray microscope for the water window
    (Bristol : Institute of Physics Publishing, 2013) Legall, H.; Stiel, H.; Blobel, G.; Seim, C.; Baumann, J.; Yulin, S.; Esser, D.; Hoefer, M.; Wiesemann, U.; Wirtz, M.; Schneider, G.; Rehbein, S.; Hertz, H.M.
    In the water window (2.2-4.4 nm) the attenuation of radiation in water is significantly smaller than in organic material. Therefore, intact biological specimen (e.g. cells) can be investigated in their natural environment. In order to make this technique accessible to users in a laboratory environment a Full-Field Laboratory Transmission X-ray Microscope (L-TXM) has been developed. The L-TXM is operated with a nitrogen laser plasma source employing an InnoSlab high power laser system for plasma generation. For microscopy the Ly α emission of highly ionized nitrogen at 2.48 nm is used. A laser plasma brightness of 5 × 1011 photons/(s × sr × μm2 in line at 2.48 nm) at a laser power of 70 W is demonstrated. In combination with a state-of-the-art Cr/V multilayer condenser mirror the sample is illuminated with 106 photons/(μm2 × s). Using objective zone plates 35-40 nm lines can be resolved with exposure times < 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W. These exposure times enable cryo tomography in a laboratory environment.
  • Item
    Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas
    ([S.l.] : American Institute of Physics, 2021) Scott, G.G.; Indorf, G.F.H.; Ennen, M.A.; Forestier-Colleoni, P.; Hawkes, S.J.; Scaife, L.; Sedov, M.; Symes, D.R.; Thornton, C.; Beg, F.; Ma, T.; McKenna, P.; Andreev, A.A.; Teubner, U.; Neely, D.
    An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L < 0.1λ), where the interaction is highly collisional and target material dependent, followed by a period of material independent plasma expansion for longer scale lengths (L > 0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme.
  • Item
    A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams
    (College Park, MD : Institute of Physics Publishing, 2010) Pfotenhauer, S.M.; Jäckel, O.; Polz, J.; Steinke, S.; Schlenvoigt, H.-P.; Heymann, J.; Robinson, A.P.L.; Kaluza, M.C.
    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser-plasma interaction on a thin foil target is spectrally shaped by a secondary laser-plasma interaction on a separate foil, reliably creating well-separated quasi-monoenergetic features in the energy spectrum. The observed modulations are fully explained by a one-dimensional (1D) model supported by numerical simulations. These findings demonstrate that laser acceleration can, in principle, be applied in an additive manner. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Observation of energetic terahertz pulses from relativistic solid density plasmas
    (Bristol : IOP, 2012) Gopal, A.; May, T.; Herzer, S.; Reinhard, A.; Minardi, S.; Schubert, M.; Dillner, U.; Pradarutti, B.; Polz, J.; Gaumnitz, T.; Kaluza, M.C.; Jäckel, O.; Riehemann, S.; Ziegler, W.; Gemuend, H-P.; Meyer, H-G.; Paulus, G.G.
    We report the first experimental observation of terahertz (THz) radiation from the rear surface of a solid target while interacting with an intense laser pulse. Experimental and two-dimensional particle-in-cell simulations show that the observed THz radiation is mostly emitted at large angles to the target normal. Numerical results point out that a large part of the emission originates from a micron-scale plasma sheath at the rear surface of the target, which is also responsible for the ion acceleration. This opens a perspective for the application of THz radiation detection for on-site diagnostics of particle acceleration in laser-produced plasmas.
  • Item
    Nitric oxide density distributions in the effluent of an RF argon APPJ: Effect of gas flow rate and substrate
    (Bristol : IOP, 2014) Iseni, S.; Zhang, S.; Van Gessel, A.F.H.; Hofmann, S.; Van Ham, B.T.J.; Reuter, S.; Weltmann, K.-D.; Bruggeman, P.J.
    The effluent of an RF argon atmospheric pressure plasma jet, the so-called kinpen, is investigated with focus on the nitric-oxide (NO) distribution for laminar and turbulent flow regimes. An additional dry air gas curtain is applied around the plasma effluent to prevent interaction with the ambient humid air. By means of laser-induced fluorescence (LIF) the absolute spatially resolved NO density is measured as well as the rotational temperature and the air concentration. While in the laminar case, the transport of NO is attributed to thermal diffusion; in the turbulent case, turbulent mixing is responsible for air diffusion. Additionally, measurements with a molecular beam mass-spectrometer (MBMS) absolutely calibrated for NO are performed and compared with the LIF measurements. Discrepancies are explained by the contribution of the NO2 and N2O to the MBMS NO signal. Finally, the effect of a conductive substrate in front of the plasma jet on the spatial distribution of NO and air diffusion is also investigated.
  • Item
    Using the third state of matter: High harmonic generation from liquid targets
    (Bristol : IOP, 2014) Heissler, P.; Lugovoy, E.; Hörlein, R.; Waldecker, L.; Wenz, J.; Heigoldt, M.; Khrennikov, K.; Karsch, S.; Krausz, F.; Abel, B.; Tsakiris, G.D.
    High harmonic generation on solid and gaseous targets has been proven to be a powerful platform for the generation of attosecond pulses. Here we demonstrate a novel technique for the XUV generation on a smooth liquid surface target in vacuum, which circumvents the problem of low repetition rate and limited shot numbers associated with solid targets, while it maintains some of its merits. We employed atomically smooth, continuous liquid jets of water, aqueous salt solutions and ethanol that allow uninterrupted high harmonic generation due to the coherent wake emission mechanism for over 8 h. It has been found that the mechanism of plasma generation is very similar to that for smooth solid target surfaces. The vapor pressure around the liquid target in our setup has been found to be very low such that the presence of the gas phase around the liquid jet could be neglected.
  • Item
    A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments
    (Melville, NY : American Institute of Physics, 2018) Ostermayr, T.M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.
    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.