Search Results

Now showing 1 - 2 of 2
  • Item
    Silicon Powder-Based Wafers for Low-Cost Photovoltaics: Laser Treatments and Nanowire Etching
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2018) Jia, G.; Plentz, J.; Gawlik, A.; Azar, A.S.; Stokkan, G.; Syvertsen, M.; Carvalho, P.A.; Dellith, J.; Dellith, A.; Andrä, G.; Ulyashin, A.
    In this study, laser-treated polycrystalline Si (pc-Si) wafers, fabricated by wire sawing of hot-pressed ingots sintered from Si powder, have been investigated. As-cut wafers and those with high-quality thin Si layers deposited on top of them by e-beam have been subjected to laser irradiation to clarify typical trends of structural modifications caused by laser treatments. Moreover, possibility to use laser-treated Si powder-based substrates for fabrication of advanced Si structures has been analysed. It is established that (i) Si powder-based wafers with thicknesses 180 μm can be fully (from the front to back side) or partly (subsurface region) remelted by a diode laser and grain sizes in laser-treated regions can be increased; (ii) a high-quality top layer can be fabricated by crystallization of an additional a-Si layer deposited by e-beam evaporation on top of the pc-Si; and (iii) silicon nanowires can be formed by metal-assisted wet chemical etching (MAWCE) of polished Si powder-based wafers and as-cut wafers irradiated with medium laser power, while a surface texturing on the as-cut pc-Si wafers occur, and no nanowires can form in the region subject to a liquid phase crystallization (LPC) caused by high-power laser treatments.
  • Item
    On a mathematical model for laser-induced thermotherapy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Fasano, Antonio; Hömberg, Dietmar; Naumov, Dmitri
    We study a mathematical model for laser-induced thermotherapy, a minimally invasive cancer treatment. The model consists of a diffusion approximation of the radiation transport equation coupled to a bio-heat equation and a model to describe the evolution of the coagulated zone. Special emphasis is laid on a refined model of the applicator device, accounting for the effect of coolant flow inside. Comparisons between experiment and simulations show that the model is able to predict the experimentally achieved temperatures reasonably well.