Search Results

Now showing 1 - 2 of 2
  • Item
    Ultrahigh Power Factor in Thermoelectric System Nb0.95M0.05FeSb (M = Hf, Zr, and Ti)
    (Chichester : John Wiley and Sons Ltd, 2018) Ren, W.; Zhu, H.; Zhu, Q.; Saparamadu, U.; He, R.; Liu, Z.; Mao, J.; Wang, C.; Nielsch, K.; Wang, Z.; Ren, Z.
    Conversion efficiency and output power are crucial parameters for thermoelectric power generation that highly rely on figure of merit ZT and power factor (PF), respectively. Therefore, the synergistic optimization of electrical and thermal properties is imperative instead of optimizing just ZT by thermal conductivity reduction or just PF by electron transport enhancement. Here, it is demonstrated that Nb0.95Hf0.05FeSb has not only ultrahigh PF over ≈100 µW cm−1 K−2 at room temperature but also the highest ZT in a material system Nb0.95M0.05FeSb (M = Hf, Zr, Ti). It is found that Hf dopant is capable to simultaneously supply carriers for mobility optimization and introduce atomic disorder for reducing lattice thermal conductivity. As a result, Nb0.95Hf0.05FeSb distinguishes itself from other outstanding NbFeSb-based materials in both the PF and ZT. Additionally, a large output power density of ≈21.6 W cm−2 is achieved based on a single-leg device under a temperature difference of ≈560 K, showing the realistic prospect of the ultrahigh PF for power generation.
  • Item
    Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics
    (Cambridge : RSC Publ., 2021) Zhu, Taishan; He, Ran; Gong, Sheng; Xie, Tian; Gorai, Prashun; Nielsch, Kornelius; Grossman, Jeffrey C.
    Thermoelectric power generation represents a promising approach to utilize waste heat. The most effective thermoelectric materials exhibit low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic materials are documented with their κ values, while for the remaining 95% κ values are missing and challenging to predict. In this work, by combining graph neural networks and random forest approaches, we predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database, and chart the structural chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the κ chart can be further explored, and our computational and analytical tools are applicable generally for materials informatics.