Search Results

Now showing 1 - 2 of 2
  • Item
    Cracking and associated volumetric expansion of NMC811 secondary particles
    (New York, NY [u.a.] : Elsevier, 2023) Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; Deshpande, V.S.
    Secondary particles comprising a large number of nickel-rich single crystal primary particles are extensively used as storage particles in cathodes of lithium-ion batteries. It is well-established that crack formation in secondary particles is an important degradation mode that contributes to decline in battery performance. Recent X-ray tomographic observations suggest that, at very low C-rates, concentration gradients of lithium within an NMC811 secondary particle are negligible yet cracking still occurs. Additionally, during delithiation the primary particles shrink yet a volumetric expansion of the secondary particle occurs. These observations are explained by a numerical model of distributed cracking due to the extreme anisotropy of lithiation strain of primary particles. The incompatible deformation from grain to grain induces large self-stresses even in the absence of spatial gradients in the lithium concentration. The stress state is sufficient to drive a dynamic catastrophic fracture event, and the associated kinetic energy acquired by the primary particles moves them apart (akin to an explosive event) with the carbon and binder domain surrounding each secondary particle restricting the outward motion of the primary particles. It is predicted that a volume expansion of the secondary particles on the order of 20 % accompanies cracking, in agreement with recently reported observations.
  • Item
    Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes
    (Amsterdam : Elsevier, 2016) Jaumann, Tony; Balach, Juan; Langklotz, Ulrike; Sauchuk, Viktar; Fritsch, Marco; Michaelis, Alexander; Teltevskij, Valerij; Mikhailova, Daria; Oswald, Steffen; Klose, Markus; Stephani, Guenter; Hauser, Ralf; Eckert, Jürgen; Giebeler, Lars
    Fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are the most frequently used electrolyte components to enhance the lifetime of anode materials in Li-ion batteries, but for silicon it is still ambiguous when FEC or VC is more beneficial. Herein, a nanostructured silicon/carbon anode derived from low-cost HSiCl3 is tailored by the rational choice of the electrolyte component, to obtain an anode material outperforming current complex silicon structures. We demonstrate highly reversible areal capacities of up to 5 mA h/cm2 at 4.4 mg/cm2 mass loading, a specific capacity of 1280 mA h/gElectrode, a capacity retention of 81% after 500 deep-discharge cycles versus lithium metal and successful full-cell tests with high-voltage cathodes meeting the requirements for real application. Electrochemical impedance spectroscopy and post-mortem investigation provide new insights in tailoring the interfacial properties of silicon-based anodes for high performance anode materials based on an alloying mechanism with large volume changes. The role of fluorine in the FEC-derived interfacial layer is discussed in comparison with the VC-derived layer and possible degradation mechanisms are proposed. We believe that this study gives a valuable understanding and provides new strategies on the facile use of additives for highly reversible silicon anodes in Li-ion batteries.