Search Results

Now showing 1 - 5 of 5
  • Item
    The Role of Streptococcus spp. in Bovine Mastitis
    (Basel : MDPI, 2021) Kabelitz, Tina; Aubry, Etienne; van Vorst, Kira; Amon, Thomas; Fulde, Marcus
    The Streptococcus genus belongs to one of the major pathogen groups inducing bovine mastitis. In the dairy industry, mastitis is the most common and costly disease. It not only negatively impacts economic profit due to milk losses and therapy costs, but it is an important animal health and welfare issue as well. This review describes a classification, reservoirs, and frequencies of the most relevant Streptococcus species inducing bovine mastitis (S. agalactiae, S. dysgalactiae and S. uberis). Host and environmental factors influencing mastitis susceptibility and infection rates will be discussed, because it has been indicated that Streptococcus herd prevalence is much higher than mastitis rates. After infection, we report the sequence of cow immune reactions and differences in virulence factors of the main Streptococcus species. Different mastitis detection techniques together with possible conventional and alternative therapies are described. The standard approach treating streptococcal mastitis is the application of ß-lactam antibiotics. In streptococci, increased antimicrobial resistance rates were identified against enrofloxacin, tetracycline, and erythromycin. At the end, control and prevention measures will be considered, including vaccination, hygiene plan, and further interventions. It is the aim of this review to estimate the contribution and to provide detailed knowledge about the role of the Streptococcus genus in bovine mastitis.
  • Item
    Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines
    (Bristol : IOP Publ., 2021-6-22) Amon, Barbara; Çinar, Gültaç; Anderl, Michael; Dragoni, Federico; Kleinberger-Pierer, Magdalena; Hörtenhuber, Stefan
    The livestock sector is a major contributor to agricultural greenhouse gas (GHG) and nitrogen (N) emissions and efforts are being made to reduce these emissions. National emission inventories are the main tool for reporting emissions. They have to be consistent, comparable, complete, accurate and transparent. The quality of emission inventories is affected by the reporting methodology, emission factors and knowledge of individual sources. In this paper, we investigate the effects of moving from the 1996 IPCC Guidelines for National Greenhouse Gas Inventories to the 2006 IPCC Guidelines on the emission estimates from the livestock sector. With Austria as a case study, we estimated the emissions according to the two guidelines, revealing marked changes in emission estimates from different source categories resulting from changes in the applied methodology. Overall estimated GHG emissions from the livestock sector decreased when applying the IPCC 2006 methodology, except for emissions from enteric fermentation. Our study revealed shifts in the relative importance of main emission sources. While the share of CH4 emissions from enteric fermentation and manure management increased, the share of N2O emissions from manure management and soils decreased. The most marked decrease was observed for the share of indirect N2O emissions. Our study reveals a strong relationship between the emission inventory methodology and mitigation options as mitigation measures will only be effective for meeting emission reduction targets if their effectiveness can be demonstrated in the national emission inventories. We include an outlook on the 2019 IPCC Refinement and its potential effects on livestock emissions estimates. Emission inventory reports are a potent tool to show the effect of mitigation measures and the methodology prescribed in inventory guidelines will have a distinct effect on the selection of mitigation measures.
  • Item
    Food Surplus and Its Climate Burdens
    (Columbus, Ohio : American Chemical Society, 2016) Hiç, Ceren; Pradhan, Prajal; Rybski, Diego; Kropp, Jürgen P.
    Avoiding food loss and waste may counteract the increasing food demand and reduce greenhouse gas (GHG) emissions from the agricultural sector. This is crucial because of limited options available to increase food production. In the year 2010, food availability was 20% higher than was required on a global scale. Thus, a more sustainable food production and adjusted consumption would have positive environmental effects. This study provides a systematic approach to estimate consumer level food waste on a country scale and globally, based on food availability and requirements. The food requirement estimation considers demographic development, body weights, and physical activity levels. Surplus between food availability and requirements of a given country is considered as food waste. The global food requirement changed from 2,300 kcal/cap/day to 2,400 kcal/cap/day during the last 50 years, while food surplus grew from 310 kcal/cap/day to 510 kcal/cap/day. Similarly, GHG emissions related to the food surplus increased from 130 Mt CO2eq/yr to 530 Mt CO2eq/yr, an increase of more than 300%. Moreover, the global food surplus may increase up to 850 kcal/cap/day, while the total food requirement will increase only by 2%–20% by 2050. Consequently, GHG emissions associated with the food waste may also increase tremendously to 1.9–2.5 Gt CO2eq/yr.
  • Item
    Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment
    (Amsterdam [u.a.] : Elsevier Science, 2021) Kabelitz, Tina; Biniasch, Oliver; Ammon, Christian; Nübel, Ulrich; Thiel, Nadine; Janke, David; Swaminathan, Senthilathiban; Funk, Roger; Münch, Steffen; Rösler, Uwe; Siller, Paul; Amon, Barbara; Aarnink, André J. A.; Amon, Thomas
    Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50–70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.
  • Item
    Molecular epidemiology of methicillin-susceptible and methicillin-resistant staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the Nasal S. aureus Population
    (Basel : MDPI, 2020) Raafat, Dina; Mrochen, Daniel M.; Al’Sholui, Fawaz; Heuser, Elisa; Ryll, René; Pritchett-Corning, Kathleen R.; Jacob, Jens; Walther, Bernd; Matuschka, Franz-Rainer; Richter, Dania; Westerhüs, Uta; Pikula, Jiri; van den Brandt, Jens; Nicklas, Werner; Monecke, Stefan; Strommenger, Birgit; van Alen, Sarah; Becker, Karsten; Ulrich, Rainer G.; Holtfreter, Silva
    Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Freeliving wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages-many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. © 2020 by the authors.