Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Ripple coarsening on ion beam-eroded surfaces

2014, Teichmann, M., Lorbeer, J., Frost, F., Rauschenbach, B.

Abstract: The temporal evolution of ripple pattern on Ge, Si, Al2O3, and SiO2 by low-energy ion beam erosion with Xe + ions is studied. The experiments focus on the ripple dynamics in a fluence range from 1.1 × 1017 cm-2 to 1.3 × 1019 cm-2 at ion incidence angles of 65° and 75° and ion energies of 600 and 1,200 eV. At low fluences a short-wavelength ripple structure emerges on the surface that is superimposed and later on dominated by long wavelength structures for increasing fluences. The coarsening of short wavelength ripples depends on the material system and angle of incidence. These observations are associated with the influence of reflected primary ions and gradient-dependent sputtering. The investigations reveal that coarsening of the pattern is a universal behavior for all investigated materials, just at the earliest accessible stage of surface evolution.

Loading...
Thumbnail Image
Item

Pattern formation on Ge by low energy ion beam erosion

2013, Teichmann, M., Lorbeer, J., Ziberi, B., Frost, F., Rauschenbach, B.

Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies ( 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection.