Search Results

Now showing 1 - 6 of 6
  • Item
    Magnetic properties of GaAs-Fe3Si core-shell nanowires — A comparison of ensemble and single nanowire investigation
    (New York : American Institute of Physics, 2017) Hilse, Maria; Jenichen, Bernd; Herfort, Jens
    On the basis of semiconductor-ferromagnet GaAs-Fe3Si core-shell nanowires (Nws) we compare the facilities of magnetic Nw ensemble measurements by superconducting quantum interference device magnetometry versus investigations on single Nws by magnetic force microscopy and computational micromagnetic modeling. Where a careful analysis of ensemble measurements backed up by transmission electron microscopy gave no insights on the properties of the Nw shells, single Nw investigation turned out to be absolutely essential.
  • Item
    Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
    (New York : American Institute of Physics, 2013) Behler, Anna; Teichert, Niclas; Dutta, Biswanath; Waske, Anja; Hickel, Tilmann; Auge, Alexander; Hütten, Andreas; Eckert, Jürgen
    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.
  • Item
    Shape-adaptive single-molecule magnetism and hysteresis up to 14 K in oxide clusterfullerenes Dy2O@C72 and Dy2O@C74 with fused pentagon pairs and flexible Dy-(μ2-O)-Dy angle
    (Cambridge : Royal Society of Chemistry, 2020) Velkos, G.; Yang, W.; Yao, Y.-R.; Sudarkova, S.M.; Liu, X.; Büchner, B.; Avdoshenko, S.M.; Chen, N.; Popov, A.A.
    Dysprosium oxide clusterfullerenes Dy2O@Cs(10528)-C72 and Dy2O@C2(13333)-C74 are synthesized and characterized by single-crystal X-ray diffraction. Carbon cages of both molecules feature two adjacent pentagon pairs. These pentalene units determine positions of endohedral Dy ions hence the shape of the Dy2O cluster, which is bent in Dy2O@C72 but linear in Dy2O@C74. Both compounds show slow relaxation of magnetization and magnetic hysteresis. Nearly complete cancelation of ferromagnetic dipolar and antiferromagnetic exchange Dy⋯Dy interactions leads to unusual magnetic properties. Dy2O@C74 exhibits zero-field quantum tunneling of magnetization and magnetic hysteresis up to 14 K, the highest temperature among Dy-clusterfullerenes.
  • Item
    Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C82
    (Cambridge : RSC, 2020) Krylov, Denis; Velkos, Georgios; Chen, Chia-Hsiang; Büchner, Bernd; Kostanyan, Aram; Greber, Thomas; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in Cs and C3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the Cs isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in Cs and C3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity. © the Partner Organisations.
  • Item
    Robust homoclinic orbits in planar systems with Preisach hysteresis operator
    (Bristol : IOP Publ., 2016) Pimenov, Alexander; Rachinskii, Dmitrii
    We construct examples of robust homoclinic orbits for systems of ordinary differential equations coupled with the Preisach hysteresis operator. Existence of such orbits is demonstrated for the first time. We discuss a generic mechanism that creates robust homoclinic orbits and a method for finding them. An example of a homoclinic orbit in a population dynamics model with hysteretic response of the prey to variations of the predator is studied numerically.
  • Item
    Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation
    (New York : American Institute of Physics, 2016) Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M.F.-X.; Fähler, S.
    Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.