Search Results

Now showing 1 - 5 of 5
  • Item
    Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
    (New York : American Institute of Physics, 2013) Behler, Anna; Teichert, Niclas; Dutta, Biswanath; Waske, Anja; Hickel, Tilmann; Auge, Alexander; Hütten, Andreas; Eckert, Jürgen
    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.
  • Item
    Structural evolution in Ti-Cu-Ni metallic glasses during heating
    (New York : American Institute of Physics, 2015) Gargarella, P.; Pauly, S.; Stoica, M.; Vaughan, G.; Afonso, C.R.M.; Kühn, U.; Eckert, J.
    The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.
  • Item
    Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation
    (New York : American Institute of Physics, 2016) Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M.F.-X.; Fähler, S.
    Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.
  • Item
    Thermal and structural properties of the martensitic transformations in Fe7Pd3 shape memory alloys: An ab initio-based molecular dynamics study
    ([London] : IOP, 2019) Holm, Alexander; Mayr, Stefan G.
    Ferromagnetic shape memory alloys, including the Fe7Pd3 system, constitute an upcoming class of functional materials, whose atomic-scale physical foundations are still insufficiently understood. The present work employs molecular dynamics simulations, based on ab initio derived embedded atom method potentials, to study martensitic transformations and twin variant reorientation. We address thermal and stress induced austenite-martensite transitions, twinning, as well as twin boundary mobility. While the predicted thermal properties are in accordance with experimental observations, we explore the detailed crystallography underlying transformation as well as twin boundary motion. © 2019 The Author(s).
  • Item
    What is the speed limit of martensitic transformations?
    (Abingdon : Taylor & Francis, 2022) Schwabe, Stefan; Lünser, Klara; Schmidt, Daniel; Nielsch, Kornelius; Gaal, Peter; Fähler, Sebastian
    Structural martensitic transformations enable various applications, which range from high stroke actuation and sensing to energy efficient magnetocaloric refrigeration and thermomagnetic energy harvesting. All these emerging applications benefit from a fast transformation, but up to now their speed limit has not been explored. Here, we demonstrate that a thermoelastic martensite to austenite transformation can be completed within 10 ns. We heat epitaxial Ni-Mn-Ga films with a nanosecond laser pulse and use synchrotron diffraction to probe the influence of initial temperature and overheating on transformation rate and ratio. We demonstrate that an increase in thermal energy drives this transformation faster. Though the observed speed limit of 2.5 × 1027 (Js)1 per unit cell leaves plenty of room for further acceleration of applications, our analysis reveals that the practical limit will be the energy required for switching. Thus, martensitic transformations obey similar speed limits as in microelectronics, as expressed by the Margolus–Levitin theorem.