Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Homogeneous Catalyst Recycling and Separation of a Multicomponent Mixture Using Organic Solvent Nanofiltration

2019, Schnoor, Johann-Kilian, Fuchs, Martin, Böcking, Axel, Wessling, Matthias, Liauw, Marcel A.

In homogeneous catalysis, the application of organic solvent nanofiltration (OSN) has become a well-known alternative to common recycling methods. Even though some OSN membranes are commercially available, their classification and the scope of application have to be determined for the specific solvent mixture. The commercial membrane Evoniks DuraMem® 300 was tested in a mixture of ethanol, ethyl acetate, and cyclohexane with magnesium triflate as possible catalyst. The cross permeate fluxes were measured for two transmembrane pressures and the hydrodynamic radii of the components were determined. Some of the components in the ternary mixture are retained, which makes the membrane also suitable for fractioning thereof. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy

2015, Peckys, Diana B., Korf, Ulrike, de Jonge, Niels

The formation of HER2 homodimers plays an important role in breast cancer aggressiveness and progression; however, little is known about its localization. We have studied the intra- and intercellular variation of HER2 at the single-molecule level in intact SKBR3 breast cancer cells. Whole cells were visualized in hydrated state with correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM). The locations of individual HER2 receptors were detected using an anti-HER2 affibody in combination with a quantum dot (QD), a fluorescent nanoparticle. Fluorescence microscopy revealed considerable differences of HER2 membrane expression between individual cells and between different membrane regions of the same cell (that is, membrane ruffles and flat areas). Subsequent ESEM of the corresponding cellular regions provided images of individually labeled HER2 receptors. The high spatial resolution of 3 nm and the close proximity between the QD and the receptor allowed quantifying the stoichiometry of HER2 complexes, distinguishing between monomers, dimers, and higher-order clusters. Downstream data analysis based on calculating the pair correlation function from receptor positions showed that cellular regions exhibiting membrane ruffles contained a substantial fraction of HER2 in homodimeric state. Larger-order clusters were also present. Membrane areas with homogeneous membrane topography, on the contrary, displayed HER2 in random distribution. Second, HER2 homodimers appeared to be absent from a small subpopulation of cells exhibiting a flat membrane topography, possibly resting cells. Local differences in homodimer presence may point toward functional differences with possible relevance for studying metastasis and drug response.

Loading...
Thumbnail Image
Item

Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications

2014, Jahangiri, E., Reichelt, S., Thomas, I., Hausmann, K., Schlosser, D., Schulze, A.

The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 μm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste-water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel-than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

Loading...
Thumbnail Image
Item

Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions

2020, Miller, Hamish Andrew, Bouzek, Karel, Hnat, Jaromir, Loos, Stefan, Bernäcker, Christian Immanuel, Weißgärber, Thomas, Röntzsch, Lars, Meier-Haack, Jochen

Hydrogen production using water electrolysers equipped with an anion exchange membrane (AEM), a pure water feed and cheap components such as platinum group metal-free catalysts and stainless steel bipolar plates (BPP) can challenge proton exchange membrane (PEM) electrolysis systems as the state of the art. For this to happen the performance of the AEM electrolyzer must match the compact design, stability, H2purity and high current densities of PEM systems. Current research aims at bringing AEM water electrolysis technology to an advanced level in terms of electrolysis cell performance. Such technological advances must be accompanied by demonstration of the cost advantages of AEM systems. The current state of the art in AEM water electrolysis is defined by sporadic reports in the academic literature mostly dealing with catalyst or membrane development. The development of this technology requires a future roadmap for systematic development and commercialization of AEM systems and components. This will include basic and applied research, technology development & integration, and testing at a laboratory scale of small demonstration units (AEM electrolyzer shortstacks) that can be used to validate the technology (from TRL 2-3 currently to TRL 4-5). This review paper gathers together recent important research in critical materials development (catalysts, membranes and MEAs) and operating conditions (electrolyte composition, cell temperature, performance achievements). The aim of this review is to identify the current level of materials development and where improvements are required in order to demonstrate the feasibility of the technology. Once the challenges of materials development are overcome, AEM water electrolysis can drive the future use of hydrogen as an energy storage vector on a large scale (GW) especially in developing countries. © The Royal Society of Chemistry 2020.

Loading...
Thumbnail Image
Item

A bifunctional dermaseptin–thanatin dipeptide functionalizes the crop surface for sustainable pest management

2019, Schwinges, Patrick, Pariyar, Shyam, Jakob, Felix, Rahimi, Mehran, Apitius, Lina, Hunsche, Mauricio, Schmitt, Lutz, Noga, Georg, Langenbach, Caspar, Schwaneberg, Ulrich, Conrath, Uwe

To reduce pesticide use while preserving crop productivity, alternative pest and disease control measures are needed. We thought of an alternative way of functionalizing leaves of soybean to fight its most severe disease, Asian soybean rust (Phakopsora pachyrhizi). To do so, we produced bifunctional peptides that adhere to the soybean leaf surface and prevent the germination of P. pachyrhizi spores. In detail, amphiphilic peptides liquid chromatography peak I (LCI), thanatin (THA), tachystatin A2 (TA2), and lactoferricin B (LFB) were all fused to enhanced green fluorescent protein (eGFP). Of these fusion peptides, eGFP–LCI and eGFP–THA bound strongly and in a rainfast manner to the surface of soybean, barley, and corn leaves. eGFP–THA binding to soybean also withstood high temperature, sunlight and biotic degradation for at least 17 days. The dipeptides seem to bind mainly to the surface wax layer of leaves because eGFP–THA and eGFP–LCI did not stick to the wax-depleted cer-j59 mutant of barley or to corn leaves with their surface wax removed. A fusion of the antimicrobial peptide dermaseptin 01 and THA (DS01–THA) inhibits the germination of P. pachyrhizi spores in vitro and reduces Asian soybean rust disease in a rainfast manner. Therefore, this study reveals that bifunctional peptides can be used to functionalize the crop surface for sustainable disease management.

Loading...
Thumbnail Image
Item

Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation

2023, Gemmer, Lea, Niebuur, Bart-Jan, Dietz, Christian, Rauber, Daniel, Plank, Martina, Frieß, Florian V., Presser, Volker, Stark, Robert W., Kraus, Tobias, Gallei, Markus

The development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM).