Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Evaluation of optical data gained by ARAMIS-measurement of abdominal wall movements for an anisotropic pattern design of stress-adapted hernia meshes produced by embroidery technology

2017, Breier, A., Bittrich, L., Hahn, J., Spickenheuer, A.

For the sustainable repair of abdominal wall hernia the application of hernia meshes is required. One reason for the relapse of hernia after surgery is seen in an inadequate adaption of the mechanical properties of the mesh to the movements of the abdominal wall. Differences in the stiffness of the mesh and the abdominal tissue cause tension, friction and stress resulting in a deficient tissue response and subsequently in a recurrence of a hernia, preferentially in the marginal area of the mesh. Embroidery technology enables a targeted influence on the mechanical properties of the generated textile structure by a directed thread deposition. Textile parameters like stitch density, alignment and angle can be changed easily and locally in the embroidery pattern to generate a space-resolved mesh with mechanical properties adapted to the requirement of the surrounding tissue. To determine those requirements the movements of the abdominal wall and the resulting distortions need to be known. This study was conducted to gain optical data of the abdominal wall movements by non-invasive ARAMIS-measurement on 39 test persons to estimate direction and value of the major strains.

Loading...
Thumbnail Image
Item

An Anisoptropic Surface Remeshing Strategy Combining Higher Dimensional Embedding with Radial Basis Functions

2016, Dassi, Franco, Farrell, Patricio, Si, Hang

Many applications heavily rely on piecewise triangular meshes to describe complex surface geometries. High-quality meshes significantly improve numerical simulations. In practice, however, one often has to deal with several challenges. Some regions in the initial mesh may be overrefined, others too coarse. Additionally, the triangles may be too thin or not properly oriented. We present a novel mesh adaptation procedure which greatly improves the problematic input mesh and overcomes all of these drawbacks. By coupling surface reconstruction via radial basis functions with the higher dimensional embedding surface remeshing technique, we can automatically generate anisotropic meshes. Moreover, we are not only able to fill or coarsen certain mesh regions but also align the triangles according to the curvature of the reconstructed surface. This yields an acceptable trade-off between computational complexity and accuracy.

Loading...
Thumbnail Image
Item

A novel characterisation approach to reveal the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh

2021, Farr, Nicholas T. H., Roman, Sabiniano, Schäfer, Jan, Quade, Antje, Lester, Daniel, Hearnden, Vanessa, MacNeil, Sheila, Rodenburg, Cornelia

Polypropylene (PP) surgical mesh, used successfully for the surgical repair of abdominal hernias, is associated with serious clinical complications when used in the pelvic floor for repair of stress urinary incontinence or support of pelvic organ prolapse. While manufacturers claim that the material is inert and non-degradable, there is a growing body of evidence that asserts PP fibres are subject to oxidative damage and indeed explanted material from patients suffering with clinical complications has shown some evidence of fibre cracking and oxidation. It has been proposed that a pathological cellular response to the surgical mesh contributes to the medical complications; however, the mechanisms that trigger the specific host response against the material are not well understood. Specifically, this study was constructed to investigate the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. To do this we used a novel advanced spectroscopical characterisation technique, secondary electron hyperspectral imaging (SEHI), which is based on the collection of secondary electron emission spectra in a scanning electron microscope (SEM) to reveal mechanical-chemical reactions within PP meshes. This journal is

Loading...
Thumbnail Image
Item

Mesh generation for periodic 3D microstructure models and computation of effective properties

2020, Landstorfer, Manuel, Prifling, Benedikt, Schmidt, Volker

Understanding and optimizing effective properties of porous functional materials, such as permeability or conductivity, is one of the main goals of materials science research with numerous applications. For this purpose, understanding the underlying 3D microstructure is crucial since it is well known that the materials? morphology has an significant impact on their effective properties. Because tomographic imaging is expensive in time and costs, stochastic microstructure modeling is a valuable tool for virtual materials testing, where a large number of realistic 3D microstructures can be generated and used as geometry input for spatially-resolved numerical simulations. Since the vast majority of numerical simulations is based on solving differential equations, it is essential to have fast and robust methods for generating high-quality volume meshes for the geometrically complex microstructure domains. The present paper introduces a novel method for generating volume-meshes with periodic boundary conditions based on an analytical representation of the 3D microstructure using spherical harmonics. Due to its generality, the present method is applicable to many scientific areas. In particular, we present some numerical examples with applications to battery research by making use of an already existing stochastic 3D microstructure model that has been calibrated to eight differently compacted cathodes.

Loading...
Thumbnail Image
Item

TetGen : a 3D Delaunay tetrahedral mesh generator version 1.2 user's manual

2002, Si, Hang

This technical report describes the main features and the using of TetGen, a 3D Delaunay tetrahedral mesh generator. Based on the most recent developments in mesh generation algorithms, this program has been specifically designed to fulfill the task of automatically generating high quality tetrahedral meshes, which are suitable for scientific computing using numerical methods such as finite element and finite volume methods. In this document, the user will learn how to create 3D tetrahedral meshes using TetGen's input files and command line switches. Various examples were given for better understanding. This document describes the features of the version 1.2.