Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

IR-MALDI Mass Spectrometry Imaging with Plasma Post-Ionization of Nonpolar Metabolites

2022, Schneemann, Julian, Schäfer, Karl-Christian, Spengler, Bernhard, Heiles, Sven

Ambient mass spectrometry imaging (MSI) methods come with the advantage of visualizing biomolecules from tissues with no or minimal sample preparation and operation under atmospheric-pressure conditions. Similar to all other MSI methodologies, however, ambient MSI modalities suffer from a pronounced bias toward either polar or nonpolar analytes due to the underlying desorption and ionization mechanisms of the ion source. In this study, we present the design, construction, testing, and application of an in-capillary dielectric barrier discharge (DBD) module for post-ionization of neutrals desorbed by an ambient infrared matrix-assisted laser desorption/ionization (IR-MALDI) MSI source. We demonstrate that the DBD device enhances signal intensities of nonpolar compounds by up to 104 compared to IR-MALDI without affecting transmission of IR-MALDI ions. This allows performing MSI experiments of mouse tissue and Danaus plexippus caterpillar tissue sections, visualizing the distribution of sterols, fatty acids, monoglycerides, and diglycerides that are not detected in IR-MALDI MSI experiments. The pronounced signal enhancement due to IR-MALDI-DBD compared to IR-MALDI MSI enables mapping of nonpolar analytes with pixel resolutions down to 20 μm in mouse brain tissue and to discern the spatial distribution of sterol lipids characteristic for histological regions of D. plexippus.

Loading...
Thumbnail Image
Item

Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue

2016, Godoy, Patricio, Widera, Agata, Schmidt-Heck, Wolfgang, Campos, Gisela, Meyer, Christoph, Cadenas, Cristina, Reif, Raymond, Stöber, Regina, Hammad, Seddik, Pütter, Larissa, Gianmoena, Kathrin, Marchan, Rosemarie, Ghallab, Ahmed, Edlund, Karolina, Nüssler, Andreas, Thasler, Wolfgang E., Damm, Georg, Seehofer, Daniel, Weiss, Thomas S., Dirsch, Olaf, Dahmen, Uta, Gebhardt, Rolf, Chaudhari, Umesh, Meganathan, Kesavan, Sachinidis , Agapios, Kelm, Jens, Hofmann, Ute, Zahedi, René P., Guthke, Reinhard, Blüthgen, Nils, Dooley, Steven, Hengstler, Jan G.

It is well known that isolation and cultivation of primary hepatocytes cause major gene expression alterations. In the present genome-wide, time-resolved study of cultivated human and mouse hepatocytes, we made the observation that expression changes in culture strongly resemble alterations in liver diseases. Hepatocytes of both species were cultivated in collagen sandwich and in monolayer conditions. Genome-wide data were also obtained from human NAFLD, cirrhosis, HCC and hepatitis B virus-infected tissue as well as mouse livers after partial hepatectomy, CCl4 intoxication, obesity, HCC and LPS. A strong similarity between cultivation and disease-induced expression alterations was observed. For example, expression changes in hepatocytes induced by 1-day cultivation and 1-day CCl4 exposure in vivo correlated with R = 0.615 (p < 0.001). Interspecies comparison identified predominantly similar responses in human and mouse hepatocytes but also a set of genes that responded differently. Unsupervised clustering of altered genes identified three main clusters: (1) downregulated genes corresponding to mature liver functions, (2) upregulation of an inflammation/RNA processing cluster and (3) upregulated migration/cell cycle-associated genes. Gene regulatory network analysis highlights overrepresented and deregulated HNF4 and CAR (Cluster 1), Krüppel-like factors MafF and ELK1 (Cluster 2) as well as ETF (Cluster 3) among the interspecies conserved key regulators of expression changes. Interventions ameliorating but not abrogating cultivation-induced responses include removal of non-parenchymal cells, generation of the hepatocytes’ own matrix in spheroids, supplementation with bile salts and siRNA-mediated suppression of key transcription factors. In conclusion, this study shows that gene regulatory network alterations of cultivated hepatocytes resemble those of inflammatory liver diseases and should therefore be considered and exploited as disease models.

Loading...
Thumbnail Image
Item

Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors

2018, Maus, I., Rumming, M., Bergmann, I., Heeg, K., Pohl, M., Nettmann, E., Jaenicke, S., Blom, J., Pühler, A., Schlüter, A., Sczyrba, A., Klocke, M.

Background: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. Results: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. Conclusions: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.

Loading...
Thumbnail Image
Item

Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework

2020, Donges, Jonathan F., Heitzig, Jobst, Barfuss, Wolfram, Wiedermann, Marc, Kassel, Johannes A., Kittel, Tim, Kolb, Jakob J., Kolster, Till, Müller-Hansen, Finn, Otto, Ilona M., Zimmerer, Kilian B., Lucht, Wolfgang

Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes. © Author(s) 2020.

Loading...
Thumbnail Image
Item

Indirect reduction of CO2 and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives, and polyurethanes

2021, Liu, Xin, Werner, Thomas

The reduction of polar bonds, in particular carbonyl groups, is of fundamental importance in organic chemistry and biology. Herein, we report a manganese pincer complex as a versatile catalyst for the transfer hydrogenation of amides, carbamates, urea derivatives, and even polyurethanes leading to the corresponding alcohols, amines, and methanol as products. Since these compound classes can be prepared using CO2as a C1 building block the reported reaction represents an approach to the indirect reduction of CO2. Notably, these are the first examples on the reduction of carbamates and urea derivatives as well as on the C-N bond cleavage in amides by transfer hydrogenation. The general applicability of this methodology is highlighted by the successful reduction of 12 urea derivatives, 26 carbamates and 11 amides. The corresponding amines, alcohols and methanol were obtained in good to excellent yields up to 97%. Furthermore, polyurethanes were successfully converted which represents a viable strategy towards a circular economy. Based on control experiments and the observed intermediates a feasible mechanism is proposed. © The Royal Society of Chemistry 2021.

Loading...
Thumbnail Image
Item

Comparison of transition metal (Fe, Co, Ni, Cu, and Zn) containing tri-metal layered double hydroxides (LDHs) prepared by urea hydrolysis

2019, Naseem, Sajid, Gevers, Bianca, Boldt, Regine, Labuschagné, Frederick J. W. J., Leuteritz, Andreas

This paper details a successful synthesis and comparison of a range of tri-metal hydrotalcite-like layered double hydroxides (LDHs) using urea hydrolysis. Transition-metal-substituted MgMAl-LDHs were synthesized with M = Fe, Co, Ni, Cu or Zn. 5 mol% and 10 mol% substitutions were performed, where Mg was substituted with Co, Ni, Cu and Zn, and Al with Fe. The successful synthesis of crystalline MgMAl-LDHs was confirmed using X-ray powder diffraction (XRD) analysis. Energy-dispersive X-ray (EDX) spectroscopy was used to identify substituted metals and determine changes in composition. Changes in morphology were studied using scanning electron microscopy (SEM). Thermogravimetric analysis was used to determine the effect of Fe-, Co-, Ni-, Cu- or Zn-substitution on the thermal degradation of the MgMAl-LDH phase. The structure, morphology and thermal behavior of the LDHs were shown to be influenced by the substituted transition metals. The observed thermal stability took the order MgNiAl- > MgFeAl- = MgAl- ≥ MgCoAl- > MgCuAl- > MgZnAl-LDH. The urea hydrolysis method was shown to be a simple preparation method for well-defined crystallite structures with large hexagonal platelets and good distribution of transition metal atoms in the substituted LDHs. © 2019 The Royal Society of Chemistry.