Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers and thioesters

2020, Li, Yahui, Bao, Gao, Wu, Xiao-Feng

Functional group transfer reactions are an important synthetic tool in modern organic synthesis. Herein, we developed a new palladium-catalyzed intermolecular transthioetherification reaction of aryl halides with thioethers and thioesters. The synthetic utility and practicality of this catalytic protocol are demonstrated in a wide range of successful transformations (>70 examples). This catalytic protocol is applicable in carbonylative coupling processes as well, and the first example of carbonylative methylthioesterification of aryl halides has been achieved. Notably, this work also provides an approach to using natural products, such as methionine and selenomethionine, as the functional group sources. This journal is © The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Solvent-antisolvent interactions in metal halide perovskites

2023, Bautista-Quijano, Jose Roberto, Telschow, Oscar, Paulus, Fabian, Vaynzof, Yana

The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.

Loading...
Thumbnail Image
Item

Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance

2023, Gallop, Nathaniel. P., Maslennikov, Dmitry R., Mondal, Navendu, Goetz, Katelyn P., Dai, Zhenbang, Schankler, Aaron M., Sung, Woongmo, Nihonyanagi, Satoshi, Tahara, Tahei, Bodnarchuk, Maryna I., Kovalenko, Maksym V., Vaynzof, Yana, Rappe, Andrew M., Bakulin, Artem A.

Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.