Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices

2020, Cao, H., Wu, M.H., Zhou, F., McMeeking, R.M., Ritchie, R.O.

One of the contentious issues associated with the high-cycle fatigue of Nitinol, a nominally equiatomic alloy of nickel and titanium, is the claim that increasing the applied mean strain can increase, or at least have no negative impact, on the fatigue lifetime, in conflict with reported behavior for the vast majority of other metallic materials. To investigate this in further detail, cyclic fatigue tests in bending were carried out on electropolished medical grade Nitinol at 37 °C for lives of up to 400 million cycles of strain involving various levels of the mean strain. A constant life model was developed through statistical analysis of the fatigue data, with 90% reliability at a confidence level of 95% on the effective fatigue strain. Our results show that the constant life diagram, a plot of strain amplitude versus mean strain, is monotonic yet nonlinear for lives of 400 million cycles of fatigue loading. Specifically, we find that in contradiction to the aforementioned claim, the strain amplitude limit at zero mean strain is 0.55% to achieve a 400 million cycle lifetime, at 90% reliability with 95% confidence; however, to achieve the same lifetime, reliability and confidence level in the presence of a 3% or more mean strain, the required strain amplitude limit is decreased by over a factor of three to 0.16%. Moreover, for mean strains from 3% to 7%, the strain amplitude limit that allows a 400 million cycle lifetime, at 90% reliability with 95% confidence, is ~ 0.16%, and essentially independent of mean strain. We conclude that the debatable claim that an increase in the applied mean strain can increase the fatigue life of Nitinol components is not supported by the current data.

Loading...
Thumbnail Image
Item

Controlling optical trapping of metal–dielectric hybrid nanoparticles under ultrafast pulsed excitation: a theoretical investigation

2021, Devi, Anita, Nair, Shruthi S., Yadav, Sumit, De, Arijit K.

Crucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties. On the other hand, femtosecond pulsed excitation is shown to provide additional advantages in tuning of trap stiffness through harnessing optical and thermal nonlinearity. Here we demonstrate that (metal/dielectric hybrid) core/shell type and hollow-core type nanoparticles experience more force than conventional core-type nanoparticles under both continuous-wave and, in particular, ultrafast pulsed excitation. Thus, for the first time, we show how tuning both materials properties as well as the nature of excitation can impart unprecedented control over nanoscale optical trapping and manipulation leading to a wide range of applications.