Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Towards multiple readout application of plasmonic arrays

2011, Cialla, D., Weber, K., Böhme, R., Hübner, U., Schneidewind, H., Zeisberger, M., Mattheis, R., Möller, R., Popp, J.

In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.

Loading...
Thumbnail Image
Item

Dynamics of graphene growth on a metal surface: A time-dependent photoemission study

2009, Grüneis, Alexander, Kummer, Kurt, Vyalikh, Denis V.

Applying time-dependent photoemission we unravel the graphene growth process on a metallic surface by chemical vapor deposition (CVD). Graphene CVD growth is in stark contrast to the standard growth process of two-dimensional films because it is self-limiting and stops as soon as a monolayer of graphene has been synthesized. Most importantly, a novel phase of metastable graphene was discovered that is characterized by permanent and simultaneous construction and deconstruction. The high quality and large area graphene flakes are characterized by angle-resolved photoemission, proving that they are indeed monolayer and cover the whole 1×1 cm Ni(111) substrate. These findings are of high relevance to the intensive search for reliable synthesis methods for large graphene flakes of controlled layer number.