Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

2016, Xi, Wang, Schmidt, Christine K., Sanchez, Samuel, Gracias, David H., Carazo-Salas, Rafael E., Butler, Richard, Lawrence, Nicola, Jackson, Stephen P., Schmidt, Oliver G.

In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo.

Loading...
Thumbnail Image
Item

Targeting malignant melanoma with physical plasmas

2018, Pasqual-Melo, Gabriella, Gandhirajan, Rajesh Kumar, Stoffels, Ingo, Bekeschus, Sander

Melanoma is the deadliest form of cutaneous neoplasia. With a five-year survival rate of only 5–19%, metastatic melanoma presents severe challenges in clinical therapies. In addition, palliation is often problematic due to large numbers of fast growing metastasis. This calls for new therapeutic avenues targeting highly aggressive melanoma in palliative patients. One recently suggested innovative approach for eradication of topical tumor lesions is the application of cold physical plasma. This partially ionized gas emits a cocktail of reactive oxygen and nitrogen species (ROS/RNS). ROS/RNS have been shown to be a double-edged sword in fueling cancer growth at low doses but abrogating it at higher doses. The ROS/RNS output of plasma devices is tunable, and many studies have successfully decreased cancer cell growth in vitro and tumor burden in vivo. In general, increasing numbers of clinical trials suggest combination therapies to outperform monotherapies with regard to prognosis in patients. This review describes current challenges in melanoma treatment and highlights the concept of plasma therapy in experimental studies performed in melanoma research. Future perspectives are given that combine the usage of physical plasma with e.g. chemotherapy, immunotherapy, and ionizing radiation in melanoma medical oncology.

Loading...
Thumbnail Image
Item

Ex Vivo Exposure of Human Melanoma Tissue to Cold Physical Plasma Elicits Apoptosis and Modulates Inflammation

2020, Bekeschus, Sander, Moritz, Juliane, Helfrich, Iris, Boeckmann, Lars, Weltmann, Klaus-Dieter, Emmert, Steffen, Metelmann, Hans-Robert, Stoffels, Ingo, von Woedtke, Thomas

Cutaneous melanoma is the most aggressive type of skin cancer with a not-sufficient clinical outcome. High tumor mutation rates often hamper a remedial treatment, creating the need for palliative care in many patients. To reduce pain and burden, local palliation often includes cryo-ablation, immunotherapy via injection of IL2, or electrochemotherapy. Yet, a fraction of patients and lesions do not respond to those therapies. To reach even these resistances in a redox-mediated way, we treated skin biopsies from human melanoma ex vivo with cold physical plasma (kINPen MED plasma jet). This partially ionized gas generates a potent mixture of reactive oxygen species (ROS). Physical plasmas have been shown to be potent antitumor agents in preclinical melanoma and clinical head and neck cancer research. The innovation of this technology lies in its ease-of-use without anesthesia, as the “cold” plasma temperature of the kINPen MED does not exceed 37 °C. In metastatic melanoma skin biopsies from six patients, we identified a marked increase of apoptosis with plasma treatment ex vivo. This had an impact on the chemokine/cytokine profile of the cultured biopsies, e.g., three of six patient-derived biopsy supernatants showed an apparent decrease in VEGF compared to non-plasma treated specimens. Moreover, the baseline release levels of 24 chemokines/cytokines investigated may serve as a useful tool for future research on melanoma skin biopsy treatments. Our findings suggest a clinically useful role of cold physical plasma therapy in palliation of cutaneous melanoma lesions, possibly in a combinatory setting with other immune therapies.