Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Properties of ns-laser processed polydimethylsiloxane (PDMS)

2016, Atanasov, P.A., Stankova, N.E., Nedyalkov, N.N., Stoyanchov, T.R., Nikov, R.G., Fukata, N., Gerlach, J.W., Hirsch, D., Rauschenbach, B.

The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine and for preparation of high-tech devices because of its remarkable properties. In this work, we present the experimental results on drilling holes on the PDMS surface by using ultraviolet, visible or near-infrared ns-laser pulses and on studying the changes of the chemical composition and structure inside the processed areas. The material in the zone of the holes is studied by XRD, ?-Raman analyses and 3D laser microscopy in order to obtain information on the influence of different processing laser parameters, as wavelength, fluence and number of consecutive pulses on the material transformation and its modification.

Loading...
Thumbnail Image
Item

Slowness curve surface acoustic wave transducers for optimized acoustic streaming

2020, O'Rorke, R., Winkler, A., Collins, D., Ai, Y.

Surface acoustic waves can induce force gradients on the length scales of micro- and nanoparticles, allowing precise manipulation for particle capture, alignment and sorting activities. These waves typically occupy a spatial region much larger than a single particle, resulting in batch manipulation. Circular arc transducers can focus a SAW into a narrow beam on the order of the particle diameter for highly localised, single-particle manipulation by exciting wavelets which propagate to a common focal point. The anisotropic nature of SAW substrates, however, elongates and shifts the focal region. Acousto-microfluidic applications are highly dependent on the morphology of the underlying substrate displacement and, thus, become dependent on the microchannel position relative to the circular arc transducer. This requires either direct measurement or computational modelling of the SAW displacement field. We show that the directly measured elongation and shift in the focal region are recapitulated by an analytical model of beam steering, derived from a simulated slowness curve for 128° Y-cut lithium niobate. We show how the negative effects of beam steering can be negated by adjusting the curvature of arced transducers according to the slowness curve of the substrate, for which we present a simple function for convenient implementation in computational design software. Slowness-curve adjusted transducers do not require direct measurement of the SAW displacement field for microchannel placement and can capture smaller particles within the streaming vortices than can circular arc IDTs.

Loading...
Thumbnail Image
Item

Continuous electroosmotic sorting of particles in grooved microchannels

2017, Dubov, Alexander L., Molotilin, Taras Y., Vinogradova, Olga I.

We propose a novel microfluidic fractionation concept suitable for neutrally buoyant micron-sized particles. This approach takes advantage of the ability of grooved channel walls oriented at an angle to the direction of an external electric field to generate a transverse electroosmotic flow. Using computer simulations, we first demonstrate that the velocity of this secondary transverse flow depends on the distance from the wall, so neutrally buoyant particles, depending on their size and initial location, will experience different lateral displacements. We then optimize the geometry and orientation of the surface texture of the channel walls to maximize the efficiency of particle fractionation. Our method is illustrated in a full scale computer experiment where we mimic the typical microchannel with a bottom grooved wall and a source of polydisperse particles that are carried along the channel by the forward electroosmotic flow. Our simulations show that the particle dispersion can be efficiently separated by size even in a channel that is only a few texture periods long. These results can guide the design of novel microfluidic devices for efficient sorting of microparticles.

Loading...
Thumbnail Image
Item

Plant leaves as templates for soft lithography

2016, Wu, Wenming, Guijt, Rosanne M., Silina, Yuliya E., Koch, Marcus, Manz, Andreas

We report a simple fast, practical and effective method for the replication of the complex venation patterns of natural leaves into PDMS with accuracy down to a lateral size of 500 nm. Optimising the amount of crosslinker enabled the replication and sealing of the microvascular structures to yield enclosed microfluidic networks. The use of plant leaves as templates for soft lithography was demonstrated across over ten species and included reticulate, arcuate, pinnate, parallel and palmate venation patterns. SEM imaging revealed replication of the plants microscopic and sub-microscopic topography into the PDMS structures, making this method especially attractive for mimicking biological structures for in vitro assays. Flow analysis revealed that the autonomous liquid transport velocity in 1st-order microchannel was 1.5–2.2 times faster than that in the 2nd-order microchannels across three leaf types, with the sorptivity rule surprisingly preserved during self-powered flow through leaf-inspired vascularity from Carpinus betulus.

Loading...
Thumbnail Image
Item

The influence of plasma treatment on the elasticity of the in situ oxidized gradient layer in PDMS: towards crack-free wrinkling

2018, Glatz, Bernhard Alexander, Fery, Andreas

Controlled surface wrinkling is widely applied for structuring surfaces in the micro- and nano-range. The formation of cracks in the wrinkling process is however limiting applications, and developing approaches towards crack-free wrinkles is therefore vital. To understand crack-formation, we systematically characterized the thickness and mechanics of thin layers formed by O2-plasma-oxidation of polydimethyl siloxane (PDMS) as a function of plasma power and pressure using Atomic Force Microscopy Quantitative Nano-mechanical Mapping (AFM-QNM). We found a nearly constant layer thickness with simultaneously changing Young's moduli for both power and pressure screenings. We determined the respective crack densities, revealing conditions for crack-free wrinkling. Thus we could identify correlations between the intensity of plasma treatment and the cracking behavior. The primary cause for crack-suppression is a continuous elasticity gradient starting within the soft bulk PDMS, and rising up to several hundred MPa at the oxidized layer's surface. With mechanical simulations via the Finite Elements Method (FEM) we were able to demonstrate a noticeable difference in maximal stress intensity σmax between a comparable, but theoretical single layer and a gradient interface. A threshold in tensile stress of σcrit = 14 MPa distinguishes between intact and cracked layers.