Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Spider chitin: An Ultrafast Microwave-Assisted Method for Chitin Isolation from Caribena versicolor Spider Molt Cuticle

2019, Machałowski, Tomasz, Wysokowski, Marcin, Tsurkan, Mikhail V., Galli, Roberta, Schimpf, Christian, Rafaja, David, Brendler, Erica, Viehweger, Christine, Zółtowska-Aksamitowska, Sonia, Petrenko, Iaroslav, Czaczyk, Katarzyna, Kraft, Michael, Bertau, Martin, Bechmann, Nicole, Guan, Kaomei, Bornstein, Stefan R., Voronkina, Alona, Fursov, Andriy, Bejger, Magdalena, Biniek-Antosiak, Katarzyna, Rypniewski, Wojciech, Figlerowicz, Marek, Pokrovsky, Oleg, Jesionowski, Teofil, Ehrlich, Hermann

Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms “lose” large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Discretisation of the Maxwell equations on tetrahedral grids

2003, Schefter, Jürgen

The aim of this report is to describe the discretisation of the Maxwell equations on tetrahedral grids with corresponding dual Voronoi cells to explain the resulting program. The symmetry of the coefficients of the matrix is proven. A small example shows an input file and same other details.

Loading...
Thumbnail Image
Item

Plasma-treated air and water-assessment of synergistic antimicrobial effects for sanitation of food processing surfaces and environment

2019, Schnabel, Uta, Handorf, Oliver, Yarova, Kateryna, Zessin, Björn, Zechlin, Susann, Sydow, Diana, Zellmer, Elke, Stachowiak, Jörg, Andrasch, Mathias, Below, Harald, Ehlbeck, Jörg

The synergistic antimicrobial effects of plasma-processed air (PPA) and plasma-treated water (PTW), which are indirectly generated by a microwave-induced non-atmospheric pressure plasma, were investigated with the aid of proliferation assays. For this purpose, microorganisms (Listeria monocytogenes, Escherichia coli, Pectobacterium carotovorum, sporulated Bacillus atrophaeus) were cultivated as monocultures on specimens with polymeric surface structures. Both the distinct and synergistic antimicrobial potential of PPA and PTW were governed by the plasma-on time (5–50 s) and the treatment time of the specimens with PPA/PTW (1–5 min). In single PTW treatment of the bacteria, an elevation of the reduction factor with increasing treatment time could be observed (e.g., reduction factor of 2.4 to 3.0 for P. carotovorum). In comparison, the combination of PTW and subsequent PPA treatment leads to synergistic effects that are clearly not induced by longer treatment times. These findings have been valid for all bacteria (L. monocytogenes > P. carotovorum = E. coli). Controversially, the effect is reversed for endospores of B. atrophaeus. With pure PPA treatment, a strong inactivation at 50 s plasma-on time is detectable, whereas single PTW treatment shows no effect even with increasing treatment parameters. The use of synergistic effects of PTW for cleaning and PPA for drying shows a clear alternative for currently used sanitation methods in production plants. Highlights: Non-thermal atmospheric pressure microwave plasma source used indirect in two different modes—gaseous and liquid; Measurement of short and long-living nitrite and nitrate in corrosive gas PPA (plasma-processed air) and complex liquid PTW (plasma-treated water); Application of PTW and PPA in single and combined use for biological decontamination of different microorganisms.

Loading...
Thumbnail Image
Item

Air-Stable CpCoI–Phosphite–Fumarate Precatalyst in Cyclization Reactions: Comparing Different Methods of Energy Supply

2018, Fischer, Fabian, Hapke, Marko

The robust CoI precatalyst [CpCo(P{OEt}3)(trans-MeO2CHC=CHCO2Me)] was investigated in cyclotrimerizations, furnishing benzenes and pyridines from triynes, diynes and nitriles, comparing the influence of different ways of energy supply; namely, irradiation and conventional (thermal) or microwave heating. The precatalyst was found to work under all conditions, including the possibility to catalyze cyclotrimerizations at room temperature under photochemical conditions at longer reaction times. Performance of the reactions in a microwave reactor proved to be the most time-efficient way to rapidly assemble the expected reaction products; however, careful selection of reaction conditions can be required. The synthesis of pyridines and isoquinolines successfully involved the utilization of versatile functionalized nitriles, affording structurally interesting reaction products. Comparison with the known and often applied precatalyst CpCo(CO)2 demonstrated the significantly higher reactivity of the CpCoI–phosphite–olefin precatalyst.