Search Results

Now showing 1 - 3 of 3
  • Item
    An Absolute Calibration of the Near-infrared Period-Luminosity Relations of Type II Cepheids in the Milky Way and in the Large Magellanic Cloud
    (London : Institute of Physics Publ., 2022) Wielgórski, Piotr; Pietrzyński, Grzegorz; Pilecki, Bogumił; Gieren, Wolfgang; Zgirski, Bartłomiej; Górski, Marek; Hajdu, Gergely; Narloch, Weronika; Karczmarek, Paulina; Smolec, Radosław; Kervella, Pierre; Storm, Jesper; Gallenne, Alexandre; Breuval, Louise; Lewis, Megan; Kałuszyński, Mikołaj; Graczyk, Dariusz; Pych, Wojciech; Suchomska, Ksenia; Taormina, Mónica; Rojas Garcia, Gonzalo; Kotek, Aleksandra; Chini, Rolf; Pozo Nũnez, Francisco; Noroozi, Sadegh; Sobrino Figaredo, Catalina; Haas, Martin; Hodapp, Klaus; Mikołajczyk, Przemysław; Kotysz, Krzysztof; Moździerski, Dawid; Kołaczek-Szymański, Piotr
    We present time-series photometry of 21 nearby type II Cepheids in the near-infrared J, H, and K s passbands. We use this photometry, together with the Third Gaia Early Data Release parallaxes, to determine for the first time period-luminosity relations (PLRs) for type II Cepheids from field representatives of these old pulsating stars in the near-infrared regime. We found PLRs to be very narrow for BL Herculis stars, which makes them candidates for precision distance indicators. We then use archival photometry and the most accurate distance obtained from eclipsing binaries to recalibrate PLRs for type II Cepheids in the Large Magellanic Cloud (LMC). Slopes of our PLRs in the Milky Way and in the LMC differ by slightly more than 2σ and are in a good agreement with previous studies of the LMC, Galactic bulge, and Galactic globular cluster type II Cepheids samples. We use PLRs of Milky Way type II Cepheids to measure the distance to the LMC, and we obtain a distance modulus of 18.540 ± 0.026(stat.) ± 0.034(syst.) mag in the W JK Wesenheit index. We also investigate the metallicity effect within our Milky Way sample, and we find a rather significant value of about -0.2 mag dex-1 in each band meaning that more metal-rich type II Cepheids are intrinsically brighter than their more metal-poor counterparts, in agreement with the value obtained from type II Cepheids in Galactic globular clusters. The main source of systematic error on our Milky Way PLRs calibration, and the LMC distance, is the current uncertainty of the Gaia parallax zero-point.
  • Item
    Tracing Birth Properties of Stars with Abundance Clustering
    (London : Institute of Physics Publ., 2022) Ratcliffe, Bridget L.; Ness, Melissa K.; Buck, Tobias; Johnston, Kathryn V.; Sen, Bodhisattva; Beraldo e Silva, Leandro; Debattista, Victor P.
    To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way-like simulations with distributed and steady star formation histories, we find that groups of chemically similar stars comprise different groups in birth place (R birth) and time (age). Simulating observational abundance errors (0.05 dex), we find that to trace distinct groups of (R birth, age) requires a large vector of abundances. Using 15 element abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25% overlap in (R birth, age). We build a simple model to show that in the context of these simulations, it is possible to infer a star's age and R birth from abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find that abundance clustering is ineffective for a third simulation, where low-α stars form distributed in the disk and early high-α stars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α/Fe]-[Fe/H] plane, which is inconsistent with the Milky Way's observed properties. We conclude that abundance clustering is a promising approach toward charting the history of our Galaxy.
  • Item
    A Kiloparsec-scale Molecular Wave in the Inner Galaxy: Feather of the Milky Way?
    (London : Institute of Physics Publ., 2021) Veena, V.S.; Schilke, P.; Sánchez-Monge, Á.; Sormani, M.C.; Klessen, R.S.; Schuller, F.; Colombo, D.; Csengeri, T.; Mattern, M.; Urquhart, J. S.
    We report the discovery of a velocity coherent, kiloparsec-scale molecular structure toward the Galactic center region with an angular extent of 30° and an aspect ratio of 60:1. The kinematic distance of the CO structure ranges between 4.4 and 6.5 kpc. Analysis of the velocity data and comparison with the existing spiral arm models support that a major portion of this structure is either a subbranch of the Norma arm or an interarm giant molecular filament, likely to be a kiloparsec-scale feather (or spur) of the Milky Way, similar to those observed in nearby spiral galaxies. The filamentary cloud is at least 2.0 kpc in extent, considering the uncertainties in the kinematic distances, and it could be as long as 4 kpc. The vertical distribution of this highly elongated structure reveals a pattern similar to that of a sinusoidal wave. The exact mechanisms responsible for the origin of such a kiloparsec-scale filament and its wavy morphology remains unclear. The distinct wave-like shape and its peculiar orientation makes this cloud, named as the Gangotri wave, one of the largest and most intriguing structures identified in the Milky Way.