Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Dynamic maximum entropy reduction

2019, Klika, Václav, Pavelka, Michal, Vágner, Petr, Grmela, Miroslav

Any physical system can be regarded on different levels of description varying by how detailed the description is. We propose a method called Dynamic MaxEnt (DynMaxEnt) that provides a passage from the more detailed evolution equations to equations for the less detailed state variables. The method is based on explicit recognition of the state and conjugate variables, which can relax towards the respective quasi-equilibria in different ways. Detailed state variables are reduced using the usual principle of maximum entropy (MaxEnt), whereas relaxation of conjugate variables guarantees that the reduced equations are closed. Moreover, an infinite chain of consecutive DynMaxEnt approximations can be constructed. The method is demonstrated on a particle with friction, complex fluids (equipped with conformation and Reynolds stress tensors), hyperbolic heat conduction and magnetohydrodynamics. © 2020 by the authors.

Loading...
Thumbnail Image
Item

An H2-type error bound for time-limited balanced truncation

2017, Redmann, Martin, Kürschner, Patrick

When solving partial differential equations numerically, usually a high order spatial discretization is needed. Model order reduction (MOR) techniques are often used to reduce the order of spatially-discretized systems and hence reduce computational complexity. A particular MOR technique to obtain a reduced order model (ROM) is balanced truncation (BT). However, if one aims at finding a good ROM on a certain finite time interval only, time-limited BT (TLBT) can be a more accurate alternative. So far, no error bound on TLBT has been proved. In this paper, we close this gap in the theory by providing an H2 error bound for TLBT with two different representations. The performance of the error bound is then shown in several numerical experiments.