Search Results

Now showing 1 - 10 of 12
  • Item
    Ultrafast Structural Changes in Chiral Molecules Measured with Free-Electron Lasers
    (Bristol : IOP Publ., 2020) Schmidt, P.; Music, V.; Hartmann, G.; Boll, R.; Erk, B.; Bari, S.; Allum, F.; Baumann, T.M.; Brenner, G.; Brouard, M.; Burt, M.; Coffee, R.; Dörner, S.; Galler, A.; Grychtol, P.; Heathcote, D.; Inhester, L.; Kazemi, M.; Larsson, M.; Li, Z.; Lutmann, A.; Manschwetus, B.; Marder, L.; Mason, R.; Moeller, S.; Osipov, T.; Otto, H.; Passow, C.; Rolles, D.; Rupprecht, P.; Schubert, K.; Schwob, L.; Thomas, R.; Vallance, C.; Von Korff Schmising, C.; Wagner, R.; Walter, P.; Wolf, T.J.A.; Zhaunerchyk, V.; Meyer, M.; Ehresmann, A.; Knie, A.; Demekhin, P.V.; Ilchen, M.
    (X-ray) free-electron lasers are employed to site specifically interrogate atomic fragments during ultra-fast photolysis of chiral molecules via time-resolved photoelectron circular dichroism. © 2020 Institute of Physics Publishing. All rights reserved.
  • Item
    Full-dimensional treatment of short-time vibronic dynamics in a molecular high-order-harmonic-generation process in methane
    (College Park, Md : APS, 2017) Patchkovskii, Serguei; Schuurman, Michael S.
    We present derivation and implementation of the multiconfigurational strong-field approximation with Gaussian nuclear wave packets (MC-SFA-GWP) - a version of the molecular strong-field approximation which treats all electronic and nuclear degrees of freedom, including their correlations, quantum mechanically. The technique allows realistic simulation of high-order-harmonic emission in polyatomic molecules without invoking reduced-dimensionality models for the nuclear motion or the electronic structure. We use MC-SFA-GWP to model isotope effects in high-order-harmonic-generation (HHG) spectroscopy of methane. The HHG emission in this molecule transiently involves the strongly vibronically coupled F22 electronic state of the CH4+ cation. We show that the isotopic HHG ratio in methane contains signatures of (a) field-free vibronic dynamics at the conical intersection (CI); (b) resonant features in the recombination cross sections; (c) laser-driven bound-state dynamics; as well as (d) the well-known short-time Gaussian decay of the emission. We assign the intrinsic vibronic feature (a) to a relatively long-lived (≥4 fs) vibronic wave packet of the singly excited ν4 (t2) and ν2 (e) vibrational modes, strongly coupled to the components of the F22 electronic state. We demonstrate that these physical effects differ in their dependence on the wavelength, intensity, and duration of the driving pulse, allowing them to be disentangled. We thus show that HHG spectroscopy provides a versatile tool for exploring both conical intersections and resonant features in photorecombination matrix elements in the regime not easily accessible with other techniques.
  • Item
    Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance
    (Bristol : Institute of Physics Publishing, 2013) Kornilov, O.; Eckstein, M.; Rosenblatt, M.; Schulz, C.P.; Motomura, K.; Rouzée, A.; Klei, J.; Foucar, L.; Siano, M.; Lübcke, A.; Schapper, F.; Johnsson, P.; Holland, D.M.P.; Schlathölter, T.; Marchenko, T.; Düsterer, S.; Ueda, K.; Vrakking, M.J.J.; Frasinski, L.J.
    Single-shot time-of-flight spectra for Coulomb explosion of N2 and I2 molecules have been recorded at the Free Electron LASer in Hamburg (FLASH) and have been analysed using a partial covariance mapping technique. The partial covariance analysis unravels a detailed picture of all significant Coulomb explosion pathways, extending up to the N 4+-N5+ channel for nitrogen and up to the I 8+-I9+ channel for iodine. The observation of the latter channel is unexpected if only sequential ionization processes from the ground state ions are considered. The maximum kinetic energy release extracted from the covariance maps for each dissociation channel shows that Coulomb explosion of nitrogen molecules proceeds much faster than that of the iodine. The N 2 ionization dynamics is modelled using classical trajectory simulations in good agreement with the outcome of the experiments. The results suggest that covariance mapping of the Coulomb explosion can be used to measure the intensity and pulse duration of free-electron lasers.
  • Item
    Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets
    (Bristol : IOP Publ., 2015) Hasović, Elvedin; Milošević, Dejan B.; Gazibegović-Busuladži, Azra; Čerkić, Aner; Busuladžić, Mustafa
    We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.
  • Item
    Strong field ionization of small hydrocarbon chains with full 3D momentum analysis
    (Bristol : IOP Publ., 2015) Schulz, Claus Peter; Birkner, Sascha; Furch, Federico J.; Anderson, Alexandria; Mikosch, Jochen; Schell, Felix; Vrakking, Marc J. J.
    Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.
  • Item
    The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy
    (Cambridge : RSC Publ., 2021) Szekeres, Gergo Peter; Krekic, Szilvia; Miller, Rebecca L.; Mero, Mark; Pagel, Kevin; Heiner, Zsuzsanna
    The first vibrational sum-frequency generation (VSFG) spectra of chondroitin sulfate (CS) interacting with dipalmitoyl phosphatidylcholine (DPPC) at air–liquid interface are reported here, collected at a laser repetition rate of 100 kHz. By studying the VSFG spectra in the regions of 1050–1450 cm−1, 2750–3180 cm−1, and 3200–3825 cm−1, it was concluded that in the presence of Ca2+ ions, the head groups together with the head-group-bound water molecules in the DPPC monolayer are strongly influenced by the interaction with CS, while the organization of the phospholipid tails remains mostly unchanged. The interactions were observed at a CS concentration below 200 nM, which exemplifies the potential of VSFG in studying biomolecular interactions at low physiological concentrations. The VSFG spectra recorded in the O–H stretching region at chiral polarization combination imply that CS molecules are organized into ordered macromolecular superstructures with a chiral secondary structure.
  • Item
    Molecular orbital imprint in laser-driven electron recollision
    (Washington, DC [u.a.] : Assoc., 2018) Schell, Felix; Bredtmann, Timm; Schulz, Claus Peter; Patchkovskii, Serguei; Vrakking, Marc J. J.; Mikosch, Jochen
    Electrons released by strong-field ionization from atoms and molecules or in solids can be accelerated in the oscillating laser field and driven back to their ion core. The ensuing interaction, phase-locked to the optical cycle, initiates the central processes underlying attosecond science. A common assumption assigns a single, welldefined return direction to the recolliding electron. We study laser-induced electron rescattering associated with two different ionization continua in the same, spatially aligned, polyatomic molecule. We show by experiment and theory that the electron return probability is molecular frame-dependent and carries structural information on the ionized orbital. The returning wave packet structure has to be accounted for in analyzing strong-field spectroscopy experiments that critically depend on the interaction of the laser-driven continuum electron, such as laser-induced electron diffraction.
  • Item
    Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization
    (Washington, DC [u.a.] : Assoc., 2018) Bello, Roger Y.; Canton, Sophie E.; Jelovina, Denis; Bozek, John D.; Rude, Bruce; Smirnova, Olga; Ivanov, Mikhail Y.; Palacios, Alicia; Martín, Fernando
    Autoionizing resonances are paradigmatic examples of two-path wave interferences between direct photoionization, which takes a few attoseconds, and ionization via quasi-bound states, which takes much longer. Time-resolving the evolution of these interferences has been a long-standing goal, achieved recently in the helium atom owing to progress in attosecond technologies. However, already for the hydrogen molecule, similar time imaging has remained beyond reach due to the complex interplay between fast nuclear and electronic motions. We show how vibrationally resolved photoelectron spectra of H2 allow one to reconstruct the associated subfemtosecond autoionization dynamics by using the ultrafast nuclear dynamics as an internal clock, thus forgoing ultrashort pulses. Our procedure should be general for autoionization dynamics in molecules containing light nuclei, which are ubiquitous in chemistry and biology.
  • Item
    Symmetries and Selection Rules of the Spectra of Photoelectrons and High-Order Harmonics Generated by Field-Driven Atoms and Molecules
    (Basel : MDPI, 2021) Habibović, Dino; Becker, Wilhelm; Milošević, Dejan B.
    Using the strong-field approximation we systematically investigate the selection rules for high-order harmonic generation and the symmetry properties of the angle-resolved photoelectron spectra for various atomic and molecular targets exposed to one-component and two-component laser fields. These include bicircular fields and orthogonally polarized two-color fields. The selection rules are derived directly from the dynamical symmetries of the driving field. Alternatively, we demonstrate that they can be obtained using the conservation of the projection of the total angular momentum on the quantization axis. We discuss how the harmonic spectra of atomic targets depend on the type of the ground state or, for molecular targets, on the pertinent molecular orbital. In addition, we briefly discuss some properties of the high-order harmonic spectra generated by a few-cycle laser field. The symmetry properties of the angle-resolved photoelectron momentum distribution are also determined by the dynamical symmetry of the driving field. We consider the first two terms in a Born series expansion of the T matrix, which describe the direct and the rescattered electrons. Dynamical symmetries involving time translation generate rotational symmetries obeyed by both terms. However, those that involve time reversal generate reflection symmetries that are only observed by the direct electrons. Finally, we explain how the symmetry properties, imposed by the dynamical symmetry of the driving field, are altered for molecular targets.
  • Item
    Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization
    (Melville, NY : AIP Publishing LLC, 2018) Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W. L.; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca
    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.