Search Results

Now showing 1 - 8 of 8
  • Item
    Imaging of buried 3D magnetic rolled-up nanomembranes
    (Washington, DC : American Chemical Society, 2014) Streubel, R.; Han, L.; Kronast, F.; Ünal, A.A.; Schmidt, O.G.; Makarov, D.
    Increasing performance and enabling novel functionalities of microelectronic devices, such as three-dimensional (3D) on-chip architectures in optics, electronics, and magnetics, calls for new approaches in both fabrication and characterization. Up to now, 3D magnetic architectures had mainly been studied by integral means without providing insight into local magnetic microstructures that determine the device performance. We prove a concept that allows for imaging magnetic domain patterns in buried 3D objects, for example, magnetic tubular architectures with multiple windings. The approach is based on utilizing the shadow contrast in transmission X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy and correlating the observed 2D projection of the 3D magnetic domains with simulated XMCD patterns. That way, we are not only able to assess magnetic states but also monitor the field-driven evolution of the magnetic domain patterns in individual windings of buried magnetic rolled-up nanomembranes.
  • Item
    Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy
    (Amsterdam : Elsevier B.V., 2020) Hu, X.; Dai, G.; Sievers, S.; Fernández-Scarioni, A.; Corte-León, H.; Puttock, R.; Barton, C.; Kazakova, O.; Ulvr, M.; Klapetek, P.; Havlíček, M.; Nečas, D.; Tang, Y.; Neu, V.; Schumacher, H.W.
    Magnetic force microscopy (MFM) can be considered as a standard tool for nano-scale investigation of magnetic domain structures by probing the local stray magnetic field landscape of the measured sample. However, this generally provides only qualitative data. To quantify the stray magnetic fields, the MFM system must be calibrated. To that end, a transfer function (TF) approach was proposed, that, unlike point probe models, fully considers the finite extent of the MFM tip. However, albeit being comprehensive, the TF approach is not yet well established, mainly due to the ambiguities concerning the input parameters and the measurement procedure. Additionally, the calibration process represents an ill-posed problem which requires a regularization that introduces further parameters. In this paper we propose a guideline for quantitative stray field measurements by standard MFM tools in ambient conditions. All steps of the measurement and calibration procedure are detailed, including reference sample and sample under test (SUT) measurements and the data analysis. The suitability of the reference sample used in the present work for calibrated measurements on a sub-micron scale is discussed. A specific regularization approach based on a Pseudo-Wiener Filter is applied and combined with criteria for the numerical determination of a unique regularization parameter. To demonstrate the robustness of such a defined approach, a round robin comparison of magnetic field measurements was conducted by four laboratories. The guideline, the reference sample and the results of the round robin are discussed.
  • Item
    Electrical and magnetic properties of NiTiO3 nanoparticles synthesized by the sol-gel synthesis method and microwave sintering
    (Amsterdam : Elsevier B.V., 2019) Pavithra, C.; Madhuri, W.
    In this paper, we focused on microwave sintered NiTiO3 nanoparticles synthesized via sol-gel method. The crystal structure was determined by the X-ray diffraction. Vibrational bands related to Ni-O and Ti-O bands were confirmed using the Fourier transform infrared spectrum. These NiTiO3 ceramics obeyed semiconductor behavior of Arrhenius type. The activation energy was found to be 0.04 μeV. The M-H curve exhibited superparamagnetic behavior at room temperature.
  • Item
    Tunable charge transfer properties in metal-phthalocyanine heterojunctions
    (Cambridge : Royal Society of Chemistry, 2016) Siles, P.F.; Hahn, T.; Salvan, G.; Knupfer, M.; Zhu, F.; Zahn, D.R.T.; Schmidt, O.G.
    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.
  • Item
    Holographic vector field electron tomography of three-dimensional nanomagnets
    (London : Nature Publishing Group, 2019) Wolf, D.; Biziere, N.; Sturm, S.; Reyes, D.; Wade, T.; Niermann, T.; Krehl, J.; Warot-Fonrose, B.; Büchner, B.; Snoeck, E.; Gatel, C.; Lubk, A.
    Complex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.
  • Item
    Single-crystalline FeCo nanoparticle-filled carbon nanotubes: Synthesis, structural characterization and magnetic properties
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Ghunaim, R.; Scholz, M.; Damm, C.; Rellinghaus, B.; Klingeler, R.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.
  • Item
    Magnetoelectricity induced by rippling of magnetic nanomembranes and wires
    (College Park, MD : APS, 2023) Ortix, Carmine; van den Brink, Jeroen
    Magnetoelectric crystals have the interesting property that they allow electric fields to induce magnetic polarizations, and vice versa, magnetic fields to generate ferroelectric polarizations. Having such a magnetoelectric coupling usually requires complex types of magnetic textures, e.g., of spiraling type. Here, we establish a previously unknown approach to generate linear magnetoelectric coupling in ferromagnetic insulators with intrinsic Dzyaloshinskii-Moriya interaction (DMI). We show that the effect of nanoscale curved geometries combined with the intrinsic DMI of the magnetic shell lead to a reorganization of the magnetic texture that spontaneously breaks inversion symmetry and thereby induces macroscopic magnetoelectric multipoles. Specifically, we prove that structural deformation in the form of controlled ripples activates a magnetoelectric monopole in the recently synthesized two-dimensional magnets. We also demonstrate that in zigzag-shaped ferromagnetic wires in planar architectures, a magnetic toroidal moment triggers direct linear magnetoelectric coupling.
  • Item
    Metrological large range magnetic force microscopy
    (College Park, MD : American Institute of Physics, 2018) Dai, G.; Hu, X.; Sievers, S.; Fernández, Scarioni, A.; Neu, V.; Fluegge, J.; Schumacher, H.W.
    A new metrological large range magnetic force microscope (Met. LR-MFM) has been developed. In its design, the scanner motion is measured by using three laser interferometers along the x, y, and z axes. Thus, the scanner position and the lift height of the MFM can be accurately and traceably determined with subnanometer accuracy, allowing accurate and traceable MFM measurements. The Met. LR-MFM has a measurement range of 25 mm × 25 mm × 5 mm, larger than conventional MFMs by almost three orders of magnitude. It is capable of measuring samples from the nanoscale to the macroscale, and thus, it has the potential to bridge different magnetic field measurement tools having different spatially resolved scales. Three different measurement strategies referred to as Topo&MFM, MFMXY, and MFMZ have been developed. The Topo&MFM is designed for measuring topography and MFM phase images, similar to conventional MFMs. The MFMXY differs from the Topo&MFM as it does not measure the topography profile of surfaces at the second and successive lines, thus reducing tip wear and saving measurement time. The MFMZ allows the imaging of the stray field in the xz- or yz-planes. A number of measurement examples on a multilayered thin film reference sample made of [Co(0.4 nm)/Pt(0.9 nm)]100 and on a patterned magnetic multilayer [Co(0.4 nm)/Pt(0.9 nm)]10 with stripes with a 9.9 μm line width and 20 μm periodicity are demonstrated, indicating excellent measurement performance.