Search Results

Now showing 1 - 3 of 3
  • Item
    Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality
    (Weinheim : Wiley-VCH Verlag, 2019) Tseng M.L.; Lin Z.-H.; Kuo H.Y.; Huang T.-T.; Huang Y.-T.; Chung T.L.; Chu C.H.; Huang J.-S.; Tsai D.P.
    Metasurfaces comprising 3D chiral structures have shown great potential in chiroptical applications such as chiral optical components and sensing. So far, the main challenges lie in the nanofabrication and the limited operational bandwidth. Homogeneous and localized broadband near-field optical chirality enhancement has not been achieved. Here, an effective nanofabrication method to create a 3D chiral metasurface with far- and near-field broadband chiroptical properties is demonstrated. A focused ion beam is used to cut and stretch nanowires into 3D Archimedean spirals from stacked films. The 3D Archimedean spiral is a self-similar chiral fractal structure sensitive to the chirality of light. The spiral exhibits far- and near-field broadband chiroptical responses from 2 to 8 µm. With circularly polarized light (CPL), the spiral shows superior far-field transmission dissymmetry and handedness-dependent near-field localization. With linearly polarized excitation, homogeneous and highly enhanced broadband near-field optical chirality is generated at a stably localized position inside the spiral. The effective yet straightforward fabrication strategy allows easy fabrication of 3D chiral structures with superior broadband far-field chiroptical response as well as strongly enhanced and stably localized broadband near-field optical chirality. The reported method and chiral metasurface may find applications in broadband chiral optics and chiral sensing. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Absolute EUV reflectivity measurements using a broadband high-harmonic source and an in situ single exposure reference scheme
    (Washington, DC : Soc., 2022) Abel, Johann J.; Wiesner, Felix; Nathanael, Jan; Reinhard, Julius; Wünsche, Martin; Schmidl, Gabriele; Gawlik, Annett; Hübner, Uwe; Plentz, Jonathan; Rödel, Christian; Paulus, Gerhard G.; Fuchs, Silvio
    We present a tabletop setup for extreme ultraviolet (EUV) reflection spectroscopy in the spectral range from 40 to 100 eV by using high-harmonic radiation. The simultaneous measurements of reference and sample spectra with high energy resolution provide precise and robust absolute reflectivity measurements, even when operating with spectrally fluctuating EUV sources. The stability and sensitivity of EUV reflectivity measurements are crucial factors for many applications in attosecond science, EUV spectroscopy, and nano-scale tomography. We show that the accuracy and stability of our in situ referencing scheme are almost one order of magnitude better in comparison to subsequent reference measurements. We demonstrate the performance of the setup by reflective near-edge x-ray absorption fine structure measurements of the aluminum L2/3 absorption edge in α-Al2O3 and compare the results to synchrotron measurements.
  • Item
    Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy
    (Cambridge : Soc., 2015) Yüksel, Sezin; Schwenkbier, Lydia; Pollok, Sibyll; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
    In this study, we report on a novel approach for the label-free and species-specific detection of the plant pathogen Phytophthora ramorum from real samples using surface enhanced Raman scattering (SERS). In this context, we consider the entire analysis chain including sample preparation, DNA isolation, amplification and hybridization on SERS substrate-immobilized adenine-free capture probes. Thus, the SERS-based detection of target DNA is verified by the strong spectral feature of adenine which indicates the presence of hybridized target DNA. This property was realized by replacing adenine moieties in the species-specific capture probes with 2-aminopurine. In the case of the matching capture and target sequence, the characteristic adenine peak serves as an indicator for specific DNA hybridization. Altogether, this is the first assay demonstrating the detection of a plant pathogen from an infected plant material by label-free SERS employing DNA hybridization on planar SERS substrates consisting of silver nanoparticles.